16S rRNA Gene Sequencing of Six Psyllid Species of the Family Carsidaridae Identified Various Bacteria Including Symbiopectobacterium.

IF 2.1 4区 环境科学与生态学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbes and Environments Pub Date : 2023-01-01 DOI:10.1264/jsme2.ME23045
Junnosuke Maruyama, Hiromitsu Inoue, Yuu Hirose, Atsushi Nakabachi
{"title":"16S rRNA Gene Sequencing of Six Psyllid Species of the Family Carsidaridae Identified Various Bacteria Including Symbiopectobacterium.","authors":"Junnosuke Maruyama,&nbsp;Hiromitsu Inoue,&nbsp;Yuu Hirose,&nbsp;Atsushi Nakabachi","doi":"10.1264/jsme2.ME23045","DOIUrl":null,"url":null,"abstract":"<p><p>Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that are closely associated with various microbes. To obtain a more detailed understanding of the ecological and evolutionary behaviors of microbes in Psylloidea, the bacterial populations of six psyllid species, belonging to the family Carsidaridae, were analyzed using high-throughput amplicon sequencing of the 16S rRNA gene. The majority of the secondary symbionts identified in the present study were gammaproteobacteria, particularly those of the order Enterobacterales, including Arsenophonus and Sodalis, which are lineages found in a wide variety of insect hosts. Additionally, Symbiopectobacterium, another Enterobacterales lineage, which has recently been recognized and increasingly shown to be vertically transmitted and mutualistic in various invertebrates, was identified for the first time in Psylloidea. This lineage is closely related to Pectobacterium spp., which are plant pathogens, but forms a distinct clade exhibiting no pathogenicity to plants. Non-Enterobacterales gammaproteobacteria found in the present study were Acinetobacter, Pseudomonas (both Pseudomonadales), Delftia, Comamonas (both Burkholderiales), and Xanthomonas (Xanthomonadales), a putative plant pathogen. Regarding alphaproteobacteria, three Wolbachia (Rickettsiales) lineages belonging to supergroup B, the major group in insect lineages, were detected in four psyllid species. In addition, a Wolbachia lineage of supergroup O, a minor group recently found for the first time in Psylloidea, was detected in one psyllid species. These results suggest the pervasive transfer of bacterial symbionts among animals and plants, providing deeper insights into the evolution of the interactions among these organisms.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"38 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME23045","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Psyllids (Hemiptera: Sternorrhyncha: Psylloidea) are plant sap-sucking insects that are closely associated with various microbes. To obtain a more detailed understanding of the ecological and evolutionary behaviors of microbes in Psylloidea, the bacterial populations of six psyllid species, belonging to the family Carsidaridae, were analyzed using high-throughput amplicon sequencing of the 16S rRNA gene. The majority of the secondary symbionts identified in the present study were gammaproteobacteria, particularly those of the order Enterobacterales, including Arsenophonus and Sodalis, which are lineages found in a wide variety of insect hosts. Additionally, Symbiopectobacterium, another Enterobacterales lineage, which has recently been recognized and increasingly shown to be vertically transmitted and mutualistic in various invertebrates, was identified for the first time in Psylloidea. This lineage is closely related to Pectobacterium spp., which are plant pathogens, but forms a distinct clade exhibiting no pathogenicity to plants. Non-Enterobacterales gammaproteobacteria found in the present study were Acinetobacter, Pseudomonas (both Pseudomonadales), Delftia, Comamonas (both Burkholderiales), and Xanthomonas (Xanthomonadales), a putative plant pathogen. Regarding alphaproteobacteria, three Wolbachia (Rickettsiales) lineages belonging to supergroup B, the major group in insect lineages, were detected in four psyllid species. In addition, a Wolbachia lineage of supergroup O, a minor group recently found for the first time in Psylloidea, was detected in one psyllid species. These results suggest the pervasive transfer of bacterial symbionts among animals and plants, providing deeper insights into the evolution of the interactions among these organisms.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carsidridae科六种木虱的16S rRNA基因测序鉴定了包括共生杆菌在内的多种细菌。
木虱(半翅目:Sternorrhycha:Psylloidea)是一种与各种微生物密切相关的植物吸汁昆虫。为了更详细地了解木虱总科微生物的生态和进化行为,使用16S rRNA基因的高通量扩增子测序分析了木虱科六种木虱的细菌种群。本研究中鉴定的大多数次级共生体是γ-变形杆菌,特别是肠杆菌目的细菌,包括砷虫和索氏菌,它们是在各种昆虫宿主中发现的谱系。此外,在Psylloidea中首次发现了共生杆菌,这是另一种肠杆菌谱系,最近被发现并越来越多地表明在各种无脊椎动物中具有垂直传播和互惠性。该谱系与属于植物病原体的乳杆菌属密切相关,但形成了一个对植物没有致病性的独特分支。本研究中发现的非肠杆菌γ-变形菌为不动杆菌、假单胞菌(均为假单胞菌)、德尔夫菌、Comamonas(均为伯克霍尔德菌)和黄单胞菌(黄单胞目),这是一种假定的植物病原体。关于α蛋白细菌,在四种木虱中检测到三个属于B超组(昆虫谱系中的主要类群)的沃尔巴克氏体(立克次体)谱系。此外,在一个木虱物种中检测到了O超类群的沃尔巴克氏体谱系,这是最近首次在木虱总科中发现的一个小类群。这些结果表明,细菌共生体在动物和植物之间普遍迁移,为这些生物之间相互作用的进化提供了更深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbes and Environments
Microbes and Environments 生物-生物工程与应用微生物
CiteScore
4.10
自引率
13.60%
发文量
66
审稿时长
3 months
期刊介绍: Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.
期刊最新文献
Cell cycle perturbation uncouples mitotic progression and invasive behavior in a post-mitotic cell. Gustatory Responsiveness of Honey Bees Colonized with a Defined or Conventional Gut Microbiota. DiGAlign: Versatile and Interactive Visualization of Sequence Alignment for Comparative Genomics. Global Distribution and Diversity of Marine Parmales. Quest for Nitrous Oxide-reducing Bacteria Present in an Anammox Biofilm Fed with Nitrous Oxide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1