Causal survival analysis under competing risks using longitudinal modified treatment policies.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Lifetime Data Analysis Pub Date : 2024-01-01 Epub Date: 2023-08-24 DOI:10.1007/s10985-023-09606-7
Iván Díaz, Katherine L Hoffman, Nima S Hejazi
{"title":"Causal survival analysis under competing risks using longitudinal modified treatment policies.","authors":"Iván Díaz, Katherine L Hoffman, Nima S Hejazi","doi":"10.1007/s10985-023-09606-7","DOIUrl":null,"url":null,"abstract":"<p><p>Longitudinal modified treatment policies (LMTP) have been recently developed as a novel method to define and estimate causal parameters that depend on the natural value of treatment. LMTPs represent an important advancement in causal inference for longitudinal studies as they allow the non-parametric definition and estimation of the joint effect of multiple categorical, ordinal, or continuous treatments measured at several time points. We extend the LMTP methodology to problems in which the outcome is a time-to-event variable subject to a competing event that precludes observation of the event of interest. We present identification results and non-parametric locally efficient estimators that use flexible data-adaptive regression techniques to alleviate model misspecification bias, while retaining important asymptotic properties such as [Formula: see text]-consistency. We present an application to the estimation of the effect of the time-to-intubation on acute kidney injury amongst COVID-19 hospitalized patients, where death by other causes is taken to be the competing event.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09606-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5

Abstract

Longitudinal modified treatment policies (LMTP) have been recently developed as a novel method to define and estimate causal parameters that depend on the natural value of treatment. LMTPs represent an important advancement in causal inference for longitudinal studies as they allow the non-parametric definition and estimation of the joint effect of multiple categorical, ordinal, or continuous treatments measured at several time points. We extend the LMTP methodology to problems in which the outcome is a time-to-event variable subject to a competing event that precludes observation of the event of interest. We present identification results and non-parametric locally efficient estimators that use flexible data-adaptive regression techniques to alleviate model misspecification bias, while retaining important asymptotic properties such as [Formula: see text]-consistency. We present an application to the estimation of the effect of the time-to-intubation on acute kidney injury amongst COVID-19 hospitalized patients, where death by other causes is taken to be the competing event.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纵向修正治疗政策进行竞争风险下的因果生存分析。
纵向修正治疗策略(LMTP)是最近发展起来的一种新方法,用于定义和估计依赖于治疗自然值的因果参数。纵向修正治疗策略是纵向研究因果推断的重要进步,因为它允许对多个时间点测量的多种分类、序数或连续治疗的联合效应进行非参数定义和估计。我们将 LMTP 方法扩展到结果为时间到事件变量的问题上,在这种情况下,结果会受到竞争事件的影响,而竞争事件排除了对相关事件的观察。我们提出了识别结果和非参数局部有效估计器,这些估计器使用灵活的数据适应回归技术来减轻模型错误规范偏差,同时保留了重要的渐近特性,如[公式:见正文]一致性。我们将其应用于估计 COVID-19 住院患者中插管时间对急性肾损伤的影响,其中其他原因导致的死亡被视为竞争事件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
期刊最新文献
Two-stage pseudo maximum likelihood estimation of semiparametric copula-based regression models for semi-competing risks data. Evaluating time-to-event surrogates for time-to-event true endpoints: an information-theoretic approach based on causal inference. Conditional modeling of recurrent event data with terminal event. Optimal survival analyses with prevalent and incident patients. A flexible time-varying coefficient rate model for panel count data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1