PFAS (per- and polyfluoroalkyl substance)-free molded fiber: The future is already here.

IF 1.6 4区 医学 Q4 BIOPHYSICS Biointerphases Pub Date : 2023-07-01 DOI:10.1116/6.0002756
Mehdi Tajvidi
{"title":"PFAS (per- and polyfluoroalkyl substance)-free molded fiber: The future is already here.","authors":"Mehdi Tajvidi","doi":"10.1116/6.0002756","DOIUrl":null,"url":null,"abstract":"<p><p>With renewed interest in food packaging materials that can be both recyclable and compostable and the environmental concerns about plastic pollution in the terrestrial and aquatic ecosystems, molded fiber food packaging is experiencing an unprecedented demand around the globe. However, the phase-out of per- and polyfluoroalkyl substances (PFASs), commonly used as a water/grease resistant agent in food contact molded materials in many jurisdictions, has posed a significant challenge to the industry. This perspective outlines a recently developed solution to replace PFASs through the application of a layer of cellulose nanofibrils on the surface of molded fiber objects.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002756","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 1

Abstract

With renewed interest in food packaging materials that can be both recyclable and compostable and the environmental concerns about plastic pollution in the terrestrial and aquatic ecosystems, molded fiber food packaging is experiencing an unprecedented demand around the globe. However, the phase-out of per- and polyfluoroalkyl substances (PFASs), commonly used as a water/grease resistant agent in food contact molded materials in many jurisdictions, has posed a significant challenge to the industry. This perspective outlines a recently developed solution to replace PFASs through the application of a layer of cellulose nanofibrils on the surface of molded fiber objects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无PFAS(全氟和多氟烷基物质)模制纤维:未来已经到来。
随着人们对可回收和可堆肥的食品包装材料的重新兴趣,以及对陆地和水生生态系统中塑料污染的环境问题的关注,模塑纤维食品包装在全球范围内正经历着前所未有的需求。然而,在许多司法管辖区,全氟烷基和多氟烷基物质(PFASs)通常用作食品接触模塑材料中的抗水/抗脂剂,其逐步淘汰对该行业构成了重大挑战。这一观点概述了最近开发的一种解决方案,通过在模塑纤维物体表面应用一层纤维素纳米原纤维来取代全氟丙烷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
期刊最新文献
Interfacial crack self-healing by Sporosarcina pasteurii: From medium optimization to spore encapsulation. Influence of metal oxides on biocompatibility of additively manufactured NiTi. Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy. Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms. Dynamic spectroscopic and optical characterization and modeling of bovine serum albumin corona during interaction with N-hydroxysulfo-succinimide-covalently functionalized gold nanourchins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1