首页 > 最新文献

Biointerphases最新文献

英文 中文
Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy. 使用原子力显微镜对细胞外基质蛋白质进行分子水平的研究。
IF 2.1 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-09-01 DOI: 10.1116/6.0003789
Ashley R Walker,Jonathan R Sloneker,Jayne C Garno
Extracellular matrix (ECM) proteins provide anchorage and structural strength to cells and tissues in the body and, thus, are fundamental molecular components for processes of cell proliferation, growth, and function. Atomic force microscopy (AFM) has increasingly become a valuable approach for studying biological molecules such as ECM proteins at the level of individual molecules. Operational modes of AFM can be used to acquire the measurements of the physical, electronic, and mechanical properties of samples, as well as for viewing the intricate details of the surface chemistry of samples. Investigations of the morphology and properties of biomolecules at the nanoscale can be useful for understanding the interactions between ECM proteins and biological molecules such as cells, DNA, and other proteins. Methods for preparing protein samples for AFM studies require only basic steps, such as the immersion of a substrate in a dilute solution or protein, or the deposition of liquid droplets of protein suspensions on a flat, clean surface. Protocols of nanolithography have been used to define the arrangement of proteins for AFM studies. Using AFM, mechanical and force measurements with tips that are coated with ECM proteins can be captured in ambient or aqueous environments. In this review, representative examples of AFM studies are described for molecular-level investigations of the structure, surface assembly, protein-cell interactions, and mechanical properties of ECM proteins (collagen, elastin, fibronectin, and laminin). Methods used for sample preparation as well as characterization with modes of AFM will be discussed.
细胞外基质(ECM)蛋白为人体细胞和组织提供锚定和结构强度,因此是细胞增殖、生长和功能过程的基本分子成分。原子力显微镜(AFM)已逐渐成为在单个分子水平上研究 ECM 蛋白等生物分子的重要方法。原子力显微镜的操作模式可用于测量样品的物理、电子和机械特性,以及观察样品表面化学的复杂细节。在纳米尺度上研究生物分子的形态和特性有助于了解 ECM 蛋白质与生物分子(如细胞、DNA 和其他蛋白质)之间的相互作用。制备用于原子力显微镜研究的蛋白质样品的方法只需一些基本步骤,例如将基底浸入稀释溶液或蛋白质中,或将蛋白质悬浮液的液滴沉积在平坦、洁净的表面上。纳米光刻技术已被用于确定原子力显微镜研究中蛋白质的排列。利用原子力显微镜,可以在环境或水环境中使用涂有 ECM 蛋白质的针尖进行机械和力测量。本综述介绍了 AFM 研究的代表性实例,这些实例用于分子水平研究 ECM 蛋白质(胶原蛋白、弹性蛋白、纤连蛋白和层粘连蛋白)的结构、表面组装、蛋白质-细胞相互作用和机械性能。此外,还将讨论样品制备方法以及使用原子力显微镜进行表征的模式。
{"title":"Molecular-level studies of extracellular matrix proteins conducted using atomic force microscopy.","authors":"Ashley R Walker,Jonathan R Sloneker,Jayne C Garno","doi":"10.1116/6.0003789","DOIUrl":"https://doi.org/10.1116/6.0003789","url":null,"abstract":"Extracellular matrix (ECM) proteins provide anchorage and structural strength to cells and tissues in the body and, thus, are fundamental molecular components for processes of cell proliferation, growth, and function. Atomic force microscopy (AFM) has increasingly become a valuable approach for studying biological molecules such as ECM proteins at the level of individual molecules. Operational modes of AFM can be used to acquire the measurements of the physical, electronic, and mechanical properties of samples, as well as for viewing the intricate details of the surface chemistry of samples. Investigations of the morphology and properties of biomolecules at the nanoscale can be useful for understanding the interactions between ECM proteins and biological molecules such as cells, DNA, and other proteins. Methods for preparing protein samples for AFM studies require only basic steps, such as the immersion of a substrate in a dilute solution or protein, or the deposition of liquid droplets of protein suspensions on a flat, clean surface. Protocols of nanolithography have been used to define the arrangement of proteins for AFM studies. Using AFM, mechanical and force measurements with tips that are coated with ECM proteins can be captured in ambient or aqueous environments. In this review, representative examples of AFM studies are described for molecular-level investigations of the structure, surface assembly, protein-cell interactions, and mechanical properties of ECM proteins (collagen, elastin, fibronectin, and laminin). Methods used for sample preparation as well as characterization with modes of AFM will be discussed.","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142248059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of metal oxides on biocompatibility of additively manufactured NiTi. 金属氧化物对加成制造镍钛生物相容性的影响
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-09-01 DOI: 10.1116/6.0003665
Maria P Kwesiga, Roger J Guillory, Ali Gökhan Demir

In order to properly satisfy biomedical constraints for cardiovascular applications, additively manufactured NiTi scaffolds required further process and metallurgical engineering. Additively manufactured NiTi materials for cardiovascular use will have to undergo surface finishing in order to minimize negative surface interactions within the artery. In this study, we sought to understand biocompatibility from chemically etched additively manufactured NiTi scaffolds by laser powder bed fusion (LPBF). Although two distinct oxide films were created in the surface etching process (labeled CP-A and CP-B), no qualitative changes in microroughness were seen between the two conditions. CP-A possessed significantly less Ni at the surface (0.19 at. %) than the CP-B group (3.30 at. %), via x-ray photoelectron spectroscopy, alongside a concomitant shift in the O1 s peak presentation alluding to a greater formation of a Ni based oxide in the CP-B group. Our live dead staining revealed significant toxicity and reduced cellular attachment for the CP-B group, in addition to inducing more cell lysis (20.9 ± 5.1%), which was significantly increased when compared to CP-A (P < 0.01). Future practices of manufacturing NiTi scaffolds using LPBF should focus on producing surface films that are not only smooth, but free of cytotoxic Ni based oxides.

为了适当满足心血管应用的生物医学限制,快速成型镍钛支架需要进一步的工艺和冶金工程。用于心血管的添加制造镍钛材料必须经过表面处理,以尽量减少动脉内的负表面相互作用。在这项研究中,我们试图通过激光粉末床熔融(LPBF)了解化学蚀刻加成法制造的镍钛支架的生物相容性。虽然在表面蚀刻过程中产生了两种不同的氧化膜(CP-A 和 CP-B),但两种条件下的微观粗糙度没有质的变化。通过 X 射线光电子能谱,CP-A 组的表面镍含量(0.19%)明显低于 CP-B 组(3.30%),同时 O1 s 峰也发生了移动,这表明 CP-B 组形成了更多的镍基氧化物。我们的活死细胞染色结果表明,CP-B 组具有明显的毒性,细胞附着力降低,此外还诱导了更多的细胞裂解(20.9 ± 5.1%),与 CP-A 组相比,细胞裂解率显著增加(P.
{"title":"Influence of metal oxides on biocompatibility of additively manufactured NiTi.","authors":"Maria P Kwesiga, Roger J Guillory, Ali Gökhan Demir","doi":"10.1116/6.0003665","DOIUrl":"https://doi.org/10.1116/6.0003665","url":null,"abstract":"<p><p>In order to properly satisfy biomedical constraints for cardiovascular applications, additively manufactured NiTi scaffolds required further process and metallurgical engineering. Additively manufactured NiTi materials for cardiovascular use will have to undergo surface finishing in order to minimize negative surface interactions within the artery. In this study, we sought to understand biocompatibility from chemically etched additively manufactured NiTi scaffolds by laser powder bed fusion (LPBF). Although two distinct oxide films were created in the surface etching process (labeled CP-A and CP-B), no qualitative changes in microroughness were seen between the two conditions. CP-A possessed significantly less Ni at the surface (0.19 at. %) than the CP-B group (3.30 at. %), via x-ray photoelectron spectroscopy, alongside a concomitant shift in the O1 s peak presentation alluding to a greater formation of a Ni based oxide in the CP-B group. Our live dead staining revealed significant toxicity and reduced cellular attachment for the CP-B group, in addition to inducing more cell lysis (20.9 ± 5.1%), which was significantly increased when compared to CP-A (P < 0.01). Future practices of manufacturing NiTi scaffolds using LPBF should focus on producing surface films that are not only smooth, but free of cytotoxic Ni based oxides.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142131778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms. 有机改性水泥作为生物相容性基质与海洋模式生物界面的现象学研究。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-09-01 DOI: 10.1116/6.0003811
Jinglun Zhao, Tao Yuan, Hui Huang, Xiaolin Lu

Organic modification can generally endow inorganic materials with novel and promotional characteristics to fit into new functionalities. In this paper, new cement-based composite materials, with Portland cement as the substrate and polyacrylamide (PAM, alone) and PAM/chitosan as the functional components mixed with cement (bulk modified) or served as the surface coating (surface modified), were prepared and engineered as sampling substrates for biofilm and coral co-culture. In comparison to the bulk modified substrate and pure cement material, the surface modified substrate showed a balanced mechanical property, considering both bending and compressive strengths and distinctive surface features toward facilitating biofilm and coral growth, as characterized by spectroscopic, morphological, mechanical, and biofilm and coral co-culture experiments. We, thus, believe that the as-prepared surface modified substrate has the very potential to be applied as a substitute/alternative for the conventional cement material in the construction and engineering of artificial facilities with ecological protection functions.

有机改性通常可以赋予无机材料新颖和促进性的特性,使其具有新的功能。本文制备了新型水泥基复合材料,以硅酸盐水泥为基材,聚丙烯酰胺(PAM,单独使用)和聚丙烯酰胺/壳聚糖为功能成分,与水泥混合(块状改性)或作为表面涂层(表面改性),作为生物膜和珊瑚共培养的取样基材。通过光谱、形态、力学以及生物膜和珊瑚共培养实验,与块状改性基底和纯水泥材料相比,表面改性基底具有均衡的力学性能,既考虑了抗弯强度和抗压强度,又具有独特的表面特征,有利于生物膜和珊瑚的生长。因此,我们认为,制备的表面改性基材非常有潜力在具有生态保护功能的人工设施的建设和工程中用作传统水泥材料的替代品。
{"title":"Phenomenological investigation of organic modified cements as biocompatible substrates interfacing model marine organisms.","authors":"Jinglun Zhao, Tao Yuan, Hui Huang, Xiaolin Lu","doi":"10.1116/6.0003811","DOIUrl":"https://doi.org/10.1116/6.0003811","url":null,"abstract":"<p><p>Organic modification can generally endow inorganic materials with novel and promotional characteristics to fit into new functionalities. In this paper, new cement-based composite materials, with Portland cement as the substrate and polyacrylamide (PAM, alone) and PAM/chitosan as the functional components mixed with cement (bulk modified) or served as the surface coating (surface modified), were prepared and engineered as sampling substrates for biofilm and coral co-culture. In comparison to the bulk modified substrate and pure cement material, the surface modified substrate showed a balanced mechanical property, considering both bending and compressive strengths and distinctive surface features toward facilitating biofilm and coral growth, as characterized by spectroscopic, morphological, mechanical, and biofilm and coral co-culture experiments. We, thus, believe that the as-prepared surface modified substrate has the very potential to be applied as a substitute/alternative for the conventional cement material in the construction and engineering of artificial facilities with ecological protection functions.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organic photovoltaic biomaterial with fullerene derivatives for near-infrared light sensing in neural cells. 含富勒烯衍生物的有机光伏生物材料,用于神经细胞的近红外光传感。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1116/6.0003279
Bowei Yuan, Xue Jiang, Zijun Xie, Xuanjun Zhang, Jiaxin Zhang, Jing Hong

Retinal degenerative diseases, which can lead to photoreceptor cell apoptosis, have now become the leading irreversible cause of blindness worldwide. In this study, we developed an organic photovoltaic biomaterial for artificial retinas, enabling neural cells to detect photoelectric stimulation. The biomaterial was prepared using a conjugated polymer donor, PCE-10, and a non-fullerene receptor, Y6, both known for their strong near-infrared light absorption capabilities. Additionally, a fullerene receptor, PC61BM, was incorporated, which possesses the ability to absorb reactive oxygen species. We conducted a comprehensive investigation into the microstructure, photovoltaic properties, and photothermal effects of this three-component photovoltaic biomaterial. Furthermore, we employed Rat adrenal pheochromocytoma cells (PC-12) as a standard neural cell model to evaluate the in vitro photoelectric stimulation effect of this photovoltaic biomaterial. The results demonstrate that the photovoltaic biomaterial, enriched with fullerene derivatives, can induce intracellular calcium influx in PC-12 cells under 630 nm (red light) and 780 nm (near-infrared) laser irradiation. Moreover, there were lower levels of oxidative stress and higher levels of mitochondrial activity compared to the non-PC61BM group. This photovoltaic biomaterial proves to be an ideal substrate for near-infrared photoelectrical stimulation of neural cells and holds promise for restoring visual function in patients with photoreceptor apoptosis.

视网膜退行性疾病可导致感光细胞凋亡,现已成为全球失明的主要原因。在这项研究中,我们开发了一种用于人工视网膜的有机光电生物材料,使神经细胞能够检测光电刺激。这种生物材料是用共轭聚合物供体 PCE-10 和非富勒烯受体 Y6 制备的,这两种材料都具有很强的近红外光吸收能力。此外,我们还加入了富勒烯受体 PC61BM,它具有吸收活性氧的能力。我们对这种三组分光伏生物材料的微观结构、光伏特性和光热效应进行了全面研究。此外,我们还以大鼠肾上腺嗜铬细胞瘤细胞(PC-12)为标准神经细胞模型,评估了这种光伏生物材料的体外光电刺激效应。结果表明,在 630 纳米(红光)和 780 纳米(近红外)激光照射下,富勒烯衍生物光电生物材料可诱导 PC-12 细胞内的钙离子流入。此外,与非 PC61BM 组相比,氧化应激水平更低,线粒体活性水平更高。事实证明,这种光电生物材料是对神经细胞进行近红外光电刺激的理想基质,有望恢复光感受器凋亡患者的视觉功能。
{"title":"Organic photovoltaic biomaterial with fullerene derivatives for near-infrared light sensing in neural cells.","authors":"Bowei Yuan, Xue Jiang, Zijun Xie, Xuanjun Zhang, Jiaxin Zhang, Jing Hong","doi":"10.1116/6.0003279","DOIUrl":"https://doi.org/10.1116/6.0003279","url":null,"abstract":"<p><p>Retinal degenerative diseases, which can lead to photoreceptor cell apoptosis, have now become the leading irreversible cause of blindness worldwide. In this study, we developed an organic photovoltaic biomaterial for artificial retinas, enabling neural cells to detect photoelectric stimulation. The biomaterial was prepared using a conjugated polymer donor, PCE-10, and a non-fullerene receptor, Y6, both known for their strong near-infrared light absorption capabilities. Additionally, a fullerene receptor, PC61BM, was incorporated, which possesses the ability to absorb reactive oxygen species. We conducted a comprehensive investigation into the microstructure, photovoltaic properties, and photothermal effects of this three-component photovoltaic biomaterial. Furthermore, we employed Rat adrenal pheochromocytoma cells (PC-12) as a standard neural cell model to evaluate the in vitro photoelectric stimulation effect of this photovoltaic biomaterial. The results demonstrate that the photovoltaic biomaterial, enriched with fullerene derivatives, can induce intracellular calcium influx in PC-12 cells under 630 nm (red light) and 780 nm (near-infrared) laser irradiation. Moreover, there were lower levels of oxidative stress and higher levels of mitochondrial activity compared to the non-PC61BM group. This photovoltaic biomaterial proves to be an ideal substrate for near-infrared photoelectrical stimulation of neural cells and holds promise for restoring visual function in patients with photoreceptor apoptosis.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fighting against biofilm: The antifouling and antimicrobial material. 对抗生物膜:防污抗菌材料。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1116/6.0003695
Chao Li, Dongdong Gao, Chunmei Li, Gang Cheng, Lijun Zhang

Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.

生物膜是由自我分泌的细胞外物质保护的微生物群体。在生物材料或工程材料表面形成生物膜是一项严峻的挑战。它已引起了重大的健康、环境和社会问题。人们认为,生物膜会导致危及生命的感染、医疗植入失败、食源性疾病和海洋生物污损。为了解决这些问题,人们付出了巨大的努力来抑制材料上生物膜的形成。生物膜一旦形成就极难处理,因此,在过去的二十年里,设计出具有抗生物膜形成功能基团的材料和涂层引起了越来越多的关注。针对生物膜形成的不同阶段,人们设计了多种类型的抗生物膜策略。抗生物膜材料的开发可分为防污材料、抗菌材料、污垢释放材料和综合防污/抗菌材料。本综述总结了利用这四种方法进行的相关研究,并对它们的抗生物膜特性进行了评论。通过比较每种方法的特点,揭示研究趋势。总结了基础研究和工业应用中的抗生物膜策略。
{"title":"Fighting against biofilm: The antifouling and antimicrobial material.","authors":"Chao Li, Dongdong Gao, Chunmei Li, Gang Cheng, Lijun Zhang","doi":"10.1116/6.0003695","DOIUrl":"https://doi.org/10.1116/6.0003695","url":null,"abstract":"<p><p>Biofilms are groups of microorganisms protected by self-secreted extracellular substances. Biofilm formation on the surface of biomaterial or engineering materials becomes a severe challenge. It has caused significant health, environmental, and societal concerns. It is believed that biofilms lead to life-threatening infection, medical implant failure, foodborne disease, and marine biofouling. To address these issues, tremendous effort has been made to inhibit biofilm formation on materials. Biofilms are extremely difficult to treat once formed, so designing material and coating bearing functional groups that are capable of resisting biofilm formation has attracted increasing attention for the last two decades. Many types of antibiofilm strategies have been designed to target different stages of biofilm formation. Development of the antibiofilm material can be classified into antifouling material, antimicrobial material, fouling release material, and integrated antifouling/antimicrobial material. This review summarizes relevant research utilizing these four approaches and comments on their antibiofilm properties. The feature of each method was compared to reveal the research trend. Antibiofilm strategies in fundamental research and industrial applications were summarized.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141632615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sequential release of transforming growth factor β1 and fibroblast growth factor 2 from nanofibrous scaffolds induces cartilage differentiation of mouse adipose-derived stem cells. 纳米纤维支架依次释放转化生长因子β1和成纤维细胞生长因子2可诱导小鼠脂肪来源干细胞的软骨分化。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1116/6.0003687
Yun-Qi Wu, Jun Wang

Once damaged, cartilage has poor intrinsic capacity to repair itself. Current cartilage repair strategies cannot restore the damaged tissue sufficiently. It is hypothesized that biomimetic scaffolds, which can recapitulate important properties of the cartilage extracellular matrix, play a beneficial role in supporting cell behaviors such as growth, cartilage differentiation, and integration with native cartilage, ultimately facilitating tissue recovery. Adipose-derived stem cells regenerated cartilage upon the sequential release of transforming growth factor β1(TGFβ1) and fibroblast growth factor 2(FGF2) using a nanofibrous scaffold, in order to get the recovery of functional cartilage. Experiments in vitro have demonstrated that the release sequence of growth factors FGF2 to TGFβ1 is the most essential to promote adipose-derived stem cells into chondrocytes that then synthesize collagen II. Mouse subcutaneous implantation indicated that the treatment sequence of FGF2 to TGFβ1 was able to significantly induce multiple increase in cartilage regeneration in vivo. This result demonstrates that the group treated with FGF2 to TGFβ1 released from a nanofibrous scaffold provides a good strategy for cartilage regeneration by making a favorable microenvironment for cell growth and cartilage regeneration.

软骨一旦受损,其内在自我修复能力很差。目前的软骨修复策略无法充分恢复受损组织。据推测,生物仿生支架可以再现软骨细胞外基质的重要特性,在支持细胞行为(如生长、软骨分化以及与原生软骨整合)方面发挥有益作用,最终促进组织恢复。利用纳米纤维支架,脂肪衍生干细胞在依次释放转化生长因子β1(TGFβ1)和成纤维细胞生长因子2(FGF2)后再生软骨,以获得功能性软骨的恢复。体外实验证明,生长因子 FGF2 到 TGFβ1 的释放序列是促进脂肪来源干细胞转化为软骨细胞,进而合成胶原蛋白 II 的最基本要素。小鼠皮下植入实验表明,FGF2 至 TGFβ1 的处理序列能显著诱导体内软骨再生的多重增加。这一结果表明,用纳米纤维支架释放的 FGF2 to TGFβ1 处理组为软骨再生提供了良好的策略,为细胞生长和软骨再生创造了有利的微环境。
{"title":"Sequential release of transforming growth factor β1 and fibroblast growth factor 2 from nanofibrous scaffolds induces cartilage differentiation of mouse adipose-derived stem cells.","authors":"Yun-Qi Wu, Jun Wang","doi":"10.1116/6.0003687","DOIUrl":"https://doi.org/10.1116/6.0003687","url":null,"abstract":"<p><p>Once damaged, cartilage has poor intrinsic capacity to repair itself. Current cartilage repair strategies cannot restore the damaged tissue sufficiently. It is hypothesized that biomimetic scaffolds, which can recapitulate important properties of the cartilage extracellular matrix, play a beneficial role in supporting cell behaviors such as growth, cartilage differentiation, and integration with native cartilage, ultimately facilitating tissue recovery. Adipose-derived stem cells regenerated cartilage upon the sequential release of transforming growth factor β1(TGFβ1) and fibroblast growth factor 2(FGF2) using a nanofibrous scaffold, in order to get the recovery of functional cartilage. Experiments in vitro have demonstrated that the release sequence of growth factors FGF2 to TGFβ1 is the most essential to promote adipose-derived stem cells into chondrocytes that then synthesize collagen II. Mouse subcutaneous implantation indicated that the treatment sequence of FGF2 to TGFβ1 was able to significantly induce multiple increase in cartilage regeneration in vivo. This result demonstrates that the group treated with FGF2 to TGFβ1 released from a nanofibrous scaffold provides a good strategy for cartilage regeneration by making a favorable microenvironment for cell growth and cartilage regeneration.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building better habitats: Spatiotemporal signaling cues in 3D biointerfaces for tailored cellular functionality. 建设更好的栖息地:三维生物界面中的时空信号提示,实现量身定制的细胞功能。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1116/6.0003685
Sadegh Ghorbani, Duncan S Sutherland

A promising research direction in the field of biological engineering is the design and functional programming of three-dimensional (3D) biointerfaces designed to support living cell functionality and growth in vitro, offering a route to precisely regulate cellular behaviors and phenotypes for addressing therapeutic challenges. While traditional two-dimensional (2D) biointerfaces have provided valuable insights, incorporating specific signaling cues into a 3D biointeractive microenvironment at the right locations and time is now recognized as crucial for accurately programming cellular decision-making and communication processes. This approach aims to engineer cell-centric microenvironments with the potential to recapitulate complex biological functions into a finite set of growing cellular organizations. Additionally, they provide insights into the hierarchical logic governing the relationship between molecular components and higher-order multicellular functionality. The functional live cell-based microenvironment engineered through such innovative biointerfaces has the potential to be used as an in vitro model system for expanding our understanding of cellular behaviors or as a therapeutic habitat where cellular functions can be reprogrammed.

生物工程领域一个前景广阔的研究方向是三维(3D)生物界面的设计和功能编程,旨在支持体外活细胞的功能和生长,提供了一条精确调节细胞行为和表型以应对治疗挑战的途径。虽然传统的二维(2D)生物界面提供了宝贵的见解,但在正确的位置和时间将特定的信号线索纳入三维生物交互微环境,现在已被公认为是精确编程细胞决策和交流过程的关键。这种方法旨在设计以细胞为中心的微环境,有可能将复杂的生物功能再现到一组有限的不断生长的细胞组织中。此外,它们还能让人们深入了解分子成分与高阶多细胞功能之间的分层逻辑关系。通过这种创新的生物界面设计出的基于活细胞的功能性微环境有可能被用作体外模型系统,以扩大我们对细胞行为的了解,或用作治疗栖息地,对细胞功能进行重新编程。
{"title":"Building better habitats: Spatiotemporal signaling cues in 3D biointerfaces for tailored cellular functionality.","authors":"Sadegh Ghorbani, Duncan S Sutherland","doi":"10.1116/6.0003685","DOIUrl":"10.1116/6.0003685","url":null,"abstract":"<p><p>A promising research direction in the field of biological engineering is the design and functional programming of three-dimensional (3D) biointerfaces designed to support living cell functionality and growth in vitro, offering a route to precisely regulate cellular behaviors and phenotypes for addressing therapeutic challenges. While traditional two-dimensional (2D) biointerfaces have provided valuable insights, incorporating specific signaling cues into a 3D biointeractive microenvironment at the right locations and time is now recognized as crucial for accurately programming cellular decision-making and communication processes. This approach aims to engineer cell-centric microenvironments with the potential to recapitulate complex biological functions into a finite set of growing cellular organizations. Additionally, they provide insights into the hierarchical logic governing the relationship between molecular components and higher-order multicellular functionality. The functional live cell-based microenvironment engineered through such innovative biointerfaces has the potential to be used as an in vitro model system for expanding our understanding of cellular behaviors or as a therapeutic habitat where cellular functions can be reprogrammed.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic motors in interphases: Motion control and integration in soft robots. 相间磁电机:软体机器人的运动控制与集成。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1116/6.0003637
Miguel A Ramos Docampo

Magnetic motors are a class of out-of-equilibrium particles that exhibit controlled and fast motion overcoming Brownian fluctuations by harnessing external magnetic fields. The advances in this field resulted in motors that have been used for different applications, such as biomedicine or environmental remediation. In this Perspective, an overview of the recent advancements of magnetic motors is provided, with a special focus on controlled motion. This aspect extends from trapping, steering, and guidance to organized motor grouping and degrouping, which is known as swarm control. Further, the integration of magnetic motors in soft robots to actuate their motion is also discussed. Finally, some remarks and perspectives of the field are outlined.

磁电机是一类非平衡粒子,通过利用外部磁场,克服布朗波动,实现可控的快速运动。随着这一领域的不断进步,磁电机已被广泛应用于生物医学或环境修复等不同领域。本视角概述了磁电机的最新进展,特别关注可控运动。这方面的内容包括捕获、转向和制导,以及有组织的电机分组和解组,即所谓的蜂群控制。此外,还讨论了将磁电机集成到软机器人中以驱动其运动的问题。最后,概述了该领域的一些评论和展望。
{"title":"Magnetic motors in interphases: Motion control and integration in soft robots.","authors":"Miguel A Ramos Docampo","doi":"10.1116/6.0003637","DOIUrl":"10.1116/6.0003637","url":null,"abstract":"<p><p>Magnetic motors are a class of out-of-equilibrium particles that exhibit controlled and fast motion overcoming Brownian fluctuations by harnessing external magnetic fields. The advances in this field resulted in motors that have been used for different applications, such as biomedicine or environmental remediation. In this Perspective, an overview of the recent advancements of magnetic motors is provided, with a special focus on controlled motion. This aspect extends from trapping, steering, and guidance to organized motor grouping and degrouping, which is known as swarm control. Further, the integration of magnetic motors in soft robots to actuate their motion is also discussed. Finally, some remarks and perspectives of the field are outlined.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug-eluting contact lenses: Progress, challenges, and prospects. 药物洗脱隐形眼镜:进展、挑战和前景。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1116/6.0003612
Dongdong Gao, Chunxiao Yan, Yong Wang, Heqing Yang, Mengxin Liu, Yi Wang, Chunmei Li, Chao Li, Gang Cheng, Lijun Zhang

Topical ophthalmic solutions (eye drops) are becoming increasingly popular in treating and preventing ocular diseases for their safety, noninvasiveness, and ease of handling. However, the static and dynamic barriers of eyes cause the extremely low bioavailability (<5%) of eye drops, making ocular therapy challenging. Thus, drug-eluting corneal contact lenses (DECLs) have been intensively investigated as a drug delivery device for their attractive properties, such as sustained drug release and improved bioavailability. In order to promote the clinical application of DECLs, multiple aspects, i.e., drug release and penetration, safety, and biocompatibility, of these drug delivery systems were thoroughly examined. In this review, we systematically discussed advances in DECLs, including types of preparation materials, drug-loading strategies, drug release mechanisms, strategies for penetrating ocular barriers, in vitro and in vivo drug delivery and penetration detection, safety, and biocompatibility validation methods, as well as challenges and future perspectives.

局部眼用溶液(滴眼液)因其安全、无创伤和操作简便,在治疗和预防眼部疾病方面越来越受欢迎。然而,由于眼睛的静态和动态屏障,眼药水的生物利用率极低(仅为 0.5%)。
{"title":"Drug-eluting contact lenses: Progress, challenges, and prospects.","authors":"Dongdong Gao, Chunxiao Yan, Yong Wang, Heqing Yang, Mengxin Liu, Yi Wang, Chunmei Li, Chao Li, Gang Cheng, Lijun Zhang","doi":"10.1116/6.0003612","DOIUrl":"https://doi.org/10.1116/6.0003612","url":null,"abstract":"<p><p>Topical ophthalmic solutions (eye drops) are becoming increasingly popular in treating and preventing ocular diseases for their safety, noninvasiveness, and ease of handling. However, the static and dynamic barriers of eyes cause the extremely low bioavailability (<5%) of eye drops, making ocular therapy challenging. Thus, drug-eluting corneal contact lenses (DECLs) have been intensively investigated as a drug delivery device for their attractive properties, such as sustained drug release and improved bioavailability. In order to promote the clinical application of DECLs, multiple aspects, i.e., drug release and penetration, safety, and biocompatibility, of these drug delivery systems were thoroughly examined. In this review, we systematically discussed advances in DECLs, including types of preparation materials, drug-loading strategies, drug release mechanisms, strategies for penetrating ocular barriers, in vitro and in vivo drug delivery and penetration detection, safety, and biocompatibility validation methods, as well as challenges and future perspectives.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of free liquid layer quantity on bacteria and protein adhesion to liquid infused polymers. 游离液层数量对细菌和蛋白质粘附在注入液体的聚合物上的影响。
IF 1.6 4区 医学 Q4 BIOPHYSICS Pub Date : 2024-07-01 DOI: 10.1116/6.0003776
ChunKi Fong, Marissa Jeme Andersen, Emma Kunesh, Evan Leonard, Donovan Durand, Rachel Coombs, Ana Lidia Flores-Mireles, Caitlin Howell

Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 μm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%-80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.

注入液体的聚合物具有排斥污物的能力,因此在生物医学(包括导管相关性尿路感染(CAUTIs))领域具有广阔的应用前景。然而,人们对表面覆盖的游离液体层的数量对蛋白质和细菌粘附性的影响还不甚了解。在此,我们探讨了灌注硅胶导管材料中游离硅胶液体层的数量如何影响与 CAUTI 相关的细菌和蛋白质的粘附。为了改变游离液体层的数量,我们用物理方法去除完全灌注导管材料中多余的液体,或者部分灌注导管材料。然后我们评估了其对细菌和宿主蛋白质粘附的影响。与对照组相比,从完全灌注的样品中物理去除游离液体层后,液体层的高度从 60 μm 降至检测限以下,硅胶液体流失到环境中的量减少了约 64%,但蛋白质纤维蛋白原的沉积或常见尿路病原体粪肠球菌的粘附却没有明显增加。部分输液的样本显示出更大的液体流失减少量:与完全输液的对照组相比,输液量达到最大容量 70%-80% 的样本显示出约 85% 的液体流失减少量。值得注意的是,输液量超过 70% 的样本中纤维蛋白原或粪肠球菌粘附量没有明显增加。这些研究结果表明,调整灌注聚合物中游离液体层的水平可影响其表面的蛋白质和细菌粘附性。此外,去除游离液层可有效减少这些聚合物的液体流失,同时保持其功能。
{"title":"Effect of free liquid layer quantity on bacteria and protein adhesion to liquid infused polymers.","authors":"ChunKi Fong, Marissa Jeme Andersen, Emma Kunesh, Evan Leonard, Donovan Durand, Rachel Coombs, Ana Lidia Flores-Mireles, Caitlin Howell","doi":"10.1116/6.0003776","DOIUrl":"10.1116/6.0003776","url":null,"abstract":"<p><p>Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 μm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%-80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11324329/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biointerphases
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1