Electromagnetic counterparts to massive black-hole mergers

IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Living Reviews in Relativity Pub Date : 2022-06-24 DOI:10.1007/s41114-022-00037-8
Tamara Bogdanović, M. Coleman Miller, Laura Blecha
{"title":"Electromagnetic counterparts to massive black-hole mergers","authors":"Tamara Bogdanović,&nbsp;M. Coleman Miller,&nbsp;Laura Blecha","doi":"10.1007/s41114-022-00037-8","DOIUrl":null,"url":null,"abstract":"<div><p>The next two decades are expected to open the door to the first coincident detections of electromagnetic (EM) and gravitational-wave (GW) signatures associated with massive black-hole (MBH) binaries heading for coalescence. These detections will launch a new era of multimessenger astrophysics by expanding this growing field to the low-frequency GW regime and will provide an unprecedented understanding of the evolution of MBHs and galaxies. They will also constitute fundamentally new probes of cosmology and would enable unique tests of gravity. The aim of this Living Review is to provide an introduction to this research topic by presenting a summary of key findings, physical processes and ideas pertaining to EM counterparts to MBH mergers as they are known at the time of this writing. We review current observational evidence for close MBH binaries, discuss relevant physical processes and timescales, and summarize the possible EM counterparts to GWs in the precursor, coalescence, and afterglow stages of a MBH merger. We also describe open questions and discuss future prospects in this dynamic and quick-paced research area.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"25 1","pages":""},"PeriodicalIF":26.3000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232481/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Living Reviews in Relativity","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s41114-022-00037-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

The next two decades are expected to open the door to the first coincident detections of electromagnetic (EM) and gravitational-wave (GW) signatures associated with massive black-hole (MBH) binaries heading for coalescence. These detections will launch a new era of multimessenger astrophysics by expanding this growing field to the low-frequency GW regime and will provide an unprecedented understanding of the evolution of MBHs and galaxies. They will also constitute fundamentally new probes of cosmology and would enable unique tests of gravity. The aim of this Living Review is to provide an introduction to this research topic by presenting a summary of key findings, physical processes and ideas pertaining to EM counterparts to MBH mergers as they are known at the time of this writing. We review current observational evidence for close MBH binaries, discuss relevant physical processes and timescales, and summarize the possible EM counterparts to GWs in the precursor, coalescence, and afterglow stages of a MBH merger. We also describe open questions and discuss future prospects in this dynamic and quick-paced research area.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大质量黑洞合并的电磁对应物
未来二十年有望首次同时探测到与即将凝聚的大质量黑洞(MBH)双星相关的电磁波(EM)和引力波(GW)特征。这些探测通过将这一不断扩大的领域扩展到低频引力波机制,将开启多信使天体物理学的新纪元,并将提供对黑洞和星系演化的前所未有的理解。它们还将从根本上成为宇宙学的新探针,并能对引力进行独特的检验。本期 "生活评论 "的目的是介绍这一研究课题,概述与本文撰写时已知的 MBH 合并的电磁对应物有关的主要发现、物理过程和观点。我们回顾了目前对近距离 MBH 双星的观测证据,讨论了相关的物理过程和时间尺度,并总结了在 MBH 合并的前兆、凝聚和余辉阶段可能出现的与 GW 相对应的电磁现象。我们还描述了这一充满活力、进展迅速的研究领域的未决问题,并讨论了其未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Living Reviews in Relativity
Living Reviews in Relativity 物理-物理:粒子与场物理
CiteScore
69.90
自引率
0.70%
发文量
0
审稿时长
20 weeks
期刊介绍: Living Reviews in Relativity is a peer-reviewed, platinum open-access journal that publishes reviews of research across all areas of relativity. Directed towards the scientific community at or above the graduate-student level, articles are solicited from leading authorities and provide critical assessments of current research. They offer annotated insights into key literature and describe available resources, maintaining an up-to-date suite of high-quality reviews, thus embodying the "living" aspect of the journal's title. Serving as a valuable tool for the scientific community, Living Reviews in Relativity is often the first stop for researchers seeking information on current work in relativity. Written by experts, the reviews cite, explain, and assess the most relevant resources in a given field, evaluating existing work and suggesting areas for further research. Attracting readers from the entire relativity community, the journal is useful for graduate students conducting literature surveys, researchers seeking the latest results in unfamiliar fields, and lecturers in need of information and visual materials for presentations at all levels.
期刊最新文献
Recent developments in mathematical aspects of relativistic fluids Gravity experiments with radio pulsars Post-Newtonian theory for gravitational waves Theoretical and experimental constraints for the equation of state of dense and hot matter Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1