首页 > 最新文献

Living Reviews in Relativity最新文献

英文 中文
Recent developments in mathematical aspects of relativistic fluids 相对论流体数学方面的最新发展
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-10-25 DOI: 10.1007/s41114-024-00052-x
Marcelo Disconzi

We review some recent developments in mathematical aspects of relativistic fluids. The goal is to provide a quick entry point to some research topics of current interest that is accessible to graduate students and researchers from adjacent fields, as well as to researches working on broader aspects of relativistic fluid dynamics interested in its mathematical formalism. Instead of complete proofs, which can be found in the published literature, here we focus on the proofs’ main ideas and key concepts. After an introduction to the relativistic Euler equations, we cover the following topics: a new wave-transport formulation of the relativistic Euler equations tailored to applications; the problem of shock formation for relativistic Euler; rough (i.e., low-regularity) solutions to the relativistic Euler equations; the relativistic Euler equations with a physical vacuum boundary; relativistic fluids with viscosity. We finish with a discussion of open problems and future directions of research.

我们回顾了相对论流体数学方面的一些最新进展。我们的目标是为研究生和相邻领域的研究人员,以及对相对论流体力学数学形式感兴趣的更广泛领域的研究人员提供一个快速切入点,了解当前感兴趣的一些研究课题。我们在此重点介绍证明的主要思想和关键概念,而不是完整的证明(可在已发表的文献中找到)。在介绍相对论欧拉方程之后,我们将讨论以下主题:针对应用的相对论欧拉方程的新波传输公式;相对论欧拉的冲击形成问题;相对论欧拉方程的粗糙(即低规则性)解;具有物理真空边界的相对论欧拉方程;具有粘性的相对论流体。最后,我们将讨论未决问题和未来研究方向。
{"title":"Recent developments in mathematical aspects of relativistic fluids","authors":"Marcelo Disconzi","doi":"10.1007/s41114-024-00052-x","DOIUrl":"10.1007/s41114-024-00052-x","url":null,"abstract":"<div><p>We review some recent developments in mathematical aspects of relativistic fluids. The goal is to provide a quick entry point to some research topics of current interest that is accessible to graduate students and researchers from adjacent fields, as well as to researches working on broader aspects of relativistic fluid dynamics interested in its mathematical formalism. Instead of complete proofs, which can be found in the published literature, here we focus on the proofs’ main ideas and key concepts. After an introduction to the relativistic Euler equations, we cover the following topics: a new wave-transport formulation of the relativistic Euler equations tailored to applications; the problem of shock formation for relativistic Euler; rough (i.e., low-regularity) solutions to the relativistic Euler equations; the relativistic Euler equations with a physical vacuum boundary; relativistic fluids with viscosity. We finish with a discussion of open problems and future directions of research.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"27 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-024-00052-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gravity experiments with radio pulsars 射电脉冲星引力实验
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-07-22 DOI: 10.1007/s41114-024-00051-y
Paulo C. C. Freire, Norbert Wex

The discovery of the first pulsar in a binary star system, the Hulse–Taylor pulsar, 50 years ago opened up an entirely new field of experimental gravity. For the first time it was possible to investigate strong-field and radiative aspects of the gravitational interaction. Continued observations of the Hulse–Taylor pulsar eventually led, among other confirmations of the predictions of general relativity (GR), to the first evidence for the reality of gravitational waves. In the meantime, many more radio pulsars have been discovered that are suitable for testing GR and its alternatives. One particularly remarkable binary system is the Double Pulsar, which has far surpassed the Hulse–Taylor pulsar in several respects. In addition, binary pulsar-white dwarf systems have been shown to be particularly suitable for testing alternative gravitational theories, as they often predict strong dipolar gravitational radiation for such asymmetric systems. A rather unique pulsar laboratory is the pulsar in a hierarchical stellar triple, that led to by far the most precise confirmation of the strong-field version of the universality of free fall. Using radio pulsars, it could be shown that additional aspects of the Strong Equivalence Principle apply to the dynamics of strongly self-gravitating bodies, like the local position and local Lorentz invariance of the gravitational interaction. So far, GR has passed all pulsar tests with flying colours, while at the same time many alternative gravity theories have either been strongly constrained or even falsified. New telescopes, instrumentation, timing and search algorithms promise a significant improvement of the existing tests and the discovery of (qualitatively) new, more relativistic binary systems.

50 年前在双星系统中发现的第一颗脉冲星,即霍尔斯-泰勒脉冲星,开辟了一个全新的引力实验领域。人们第一次有可能对引力相互作用的强场和辐射方面进行研究。对霍尔斯-泰勒脉冲星的持续观测,最终除了证实广义相对论(GR)的预言之外,还首次证明了引力波的存在。与此同时,人们还发现了更多适合检验广义相对论及其替代理论的射电脉冲星。双脉冲星就是一个特别出色的双星系统,它在多个方面都远远超过了霍尔斯-泰勒脉冲星。此外,双脉冲星-白矮星系统已被证明特别适合用于测试替代引力理论,因为它们经常预言这种不对称系统会产生强烈的偶极引力辐射。一个相当独特的脉冲星实验室是分层恒星三重体内的脉冲星,它导致了迄今为止对自由落体普遍性强场版本的最精确确认。利用射电脉冲星,可以证明强等效原理的其他方面也适用于强自引力天体的动力学,比如引力相互作用的局部位置和局部洛伦兹不变性。迄今为止,地球引力理论已经顺利通过了所有脉冲星测试,而与此同时,许多其他引力理论要么受到强烈制约,要么甚至被证伪。新的望远镜、仪器、定时和搜索算法有望大大改进现有的测试,并发现(在质量上)新的、更具相对论性的双星系统。
{"title":"Gravity experiments with radio pulsars","authors":"Paulo C. C. Freire,&nbsp;Norbert Wex","doi":"10.1007/s41114-024-00051-y","DOIUrl":"10.1007/s41114-024-00051-y","url":null,"abstract":"<div><p>The discovery of the first pulsar in a binary star system, the Hulse–Taylor pulsar, 50 years ago opened up an entirely new field of experimental gravity. For the first time it was possible to investigate strong-field and radiative aspects of the gravitational interaction. Continued observations of the Hulse–Taylor pulsar eventually led, among other confirmations of the predictions of general relativity (GR), to the first evidence for the reality of gravitational waves. In the meantime, many more radio pulsars have been discovered that are suitable for testing GR and its alternatives. One particularly remarkable binary system is the Double Pulsar, which has far surpassed the Hulse–Taylor pulsar in several respects. In addition, binary pulsar-white dwarf systems have been shown to be particularly suitable for testing alternative gravitational theories, as they often predict strong dipolar gravitational radiation for such asymmetric systems. A rather unique pulsar laboratory is the pulsar in a hierarchical stellar triple, that led to by far the most precise confirmation of the strong-field version of the universality of free fall. Using radio pulsars, it could be shown that additional aspects of the Strong Equivalence Principle apply to the dynamics of strongly self-gravitating bodies, like the local position and local Lorentz invariance of the gravitational interaction. So far, GR has passed all pulsar tests with flying colours, while at the same time many alternative gravity theories have either been strongly constrained or even falsified. New telescopes, instrumentation, timing and search algorithms promise a significant improvement of the existing tests and the discovery of (qualitatively) new, more relativistic binary systems.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"27 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-024-00051-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-Newtonian theory for gravitational waves 引力波的后牛顿理论
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-07-10 DOI: 10.1007/s41114-024-00050-z
Luc Blanchet

To be observed and analyzed by the network of current gravitational-wave detectors (LIGO, Virgo, KAGRA), and in anticipation of future third generation ground-based (Einstein Telescope, Cosmic Explorer) and space-borne (LISA) detectors, inspiralling compact binaries—binary star systems composed of neutron stars and/or black holes in their late stage of evolution prior the final coalescence—require high-accuracy predictions from general relativity. The orbital dynamics and emitted gravitational waves of these very relativistic systems can be accurately modelled using state-of-the-art post-Newtonian theory. In this article we review the multipolar-post-Minkowskian approximation scheme, merged to the standard post-Newtonian expansion into a single formalism valid for general isolated matter system. This cocktail of approximation methods (called MPM-PN) has been successfully applied to compact binary systems, producing equations of motion up to the fourth-post-Newtonian (4PN) level, and gravitational waveform and flux to 4.5PN order beyond the Einstein quadrupole formula. We describe the dimensional regularization at work in such high post-Newtonian calculations, for curing both ultra-violet and infra-red divergences. Several landmark results are detailed: the definition of multipole moments, the gravitational radiation reaction, the conservative dynamics of circular orbits, the first law of compact binary mechanics, and the non-linear effects in the gravitational-wave propagation (tails, iterated tails and non-linear memory). We also discuss the case of compact binaries moving on eccentric orbits, and the effects of spins (both spin-orbit and spin–spin) on the equations of motion and gravitational-wave energy flux and waveform.

为了被目前的引力波探测器网络(LIGO、Virgo、KAGRA)观测和分析,并期待未来的第三代地基(爱因斯坦望远镜、宇宙探测器)和星载(LISA)探测器,吸入式紧凑双星--由中子星和/或黑洞组成的双星系统在最终凝聚前的演化后期--需要广义相对论的高精度预测。这些相对论性极强的系统的轨道动力学和发射的引力波可以用最先进的后牛顿理论进行精确建模。在这篇文章中,我们回顾了多极-后-明科夫斯基近似方案,它与标准的后牛顿扩展合并成一个单一的形式主义,对一般孤立物质系统有效。这种鸡尾酒近似方法(称为 MPM-PN)已成功应用于紧凑双星系统,产生了高达第四后牛顿(4PN)阶的运动方程,以及超出爱因斯坦四极公式的 4.5PN 阶引力波形和通量。我们描述了在这种高牛顿后计算中的维正则化,以消除紫外和红外发散。我们详细介绍了几个里程碑式的结果:多极矩的定义、引力辐射反应、圆形轨道的保守动力学、紧凑双星力学第一定律,以及引力波传播中的非线性效应(尾部、迭代尾部和非线性记忆)。我们还讨论了在偏心轨道上运动的紧凑双星的情况,以及自旋(自旋轨道和自旋-自旋)对运动方程和引力波能量通量及波形的影响。
{"title":"Post-Newtonian theory for gravitational waves","authors":"Luc Blanchet","doi":"10.1007/s41114-024-00050-z","DOIUrl":"10.1007/s41114-024-00050-z","url":null,"abstract":"<div><p>To be observed and analyzed by the network of current gravitational-wave detectors (LIGO, Virgo, KAGRA), and in anticipation of future third generation ground-based (Einstein Telescope, Cosmic Explorer) and space-borne (LISA) detectors, inspiralling compact binaries—binary star systems composed of neutron stars and/or black holes in their late stage of evolution prior the final coalescence—require high-accuracy predictions from general relativity. The orbital dynamics and emitted gravitational waves of these very relativistic systems can be accurately modelled using state-of-the-art post-Newtonian theory. In this article we review the multipolar-post-Minkowskian approximation scheme, merged to the standard post-Newtonian expansion into a single formalism valid for general isolated matter system. This cocktail of approximation methods (called MPM-PN) has been successfully applied to compact binary systems, producing equations of motion up to the fourth-post-Newtonian (4PN) level, and gravitational waveform and flux to 4.5PN order beyond the Einstein quadrupole formula. We describe the dimensional regularization at work in such high post-Newtonian calculations, for curing both ultra-violet and infra-red divergences. Several landmark results are detailed: the definition of multipole moments, the gravitational radiation reaction, the conservative dynamics of circular orbits, the first law of compact binary mechanics, and the non-linear effects in the gravitational-wave propagation (tails, iterated tails and non-linear memory). We also discuss the case of compact binaries moving on eccentric orbits, and the effects of spins (both spin-orbit and spin–spin) on the equations of motion and gravitational-wave energy flux and waveform.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"27 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-024-00050-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141584358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical and experimental constraints for the equation of state of dense and hot matter 稠热物质状态方程的理论和实验约束
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-06-05 DOI: 10.1007/s41114-024-00049-6
Rajesh Kumar, Veronica Dexheimer, Johannes Jahan, Jorge Noronha, Jacquelyn Noronha-Hostler, Claudia Ratti, Nico Yunes, Angel Rodrigo Nava Acuna, Mark Alford, Mahmudul Hasan Anik, Debarati Chatterjee, Katerina Chatziioannou, Hsin-Yu Chen, Alexander Clevinger, Carlos Conde, Nikolas Cruz-Camacho, Travis Dore, Christian Drischler, Hannah Elfner, Reed Essick, David Friedenberg, Suprovo Ghosh, Joaquin Grefa, Roland Haas, Alexander Haber, Jan Hammelmann, Steven Harris, Carl-Johan Haster, Tetsuo Hatsuda, Mauricio Hippert, Renan Hirayama, Jeremy W. Holt, Micheal Kahangirwe, Jamie Karthein, Toru Kojo, Philippe Landry, Zidu Lin, Matthew Luzum, Timothy Andrew Manning, Jordi Salinas San Martin, Cole Miller, Elias Roland Most, Debora Mroczek, Azwinndini Muronga, Nicolas Patino, Jeffrey Peterson, Christopher Plumberg, Damien Price, Constanca Providencia, Romulo Rougemont, Satyajit Roy, Hitansh Shah, Stuart Shapiro, Andrew W. Steiner, Michael Strickland, Hung Tan, Hajime Togashi, Israel Portillo Vazquez, Pengsheng Wen, Ziyuan Zhang, MUSES Collaboration

This review aims at providing an extensive discussion of modern constraints relevant for dense and hot strongly interacting matter. It includes theoretical first-principle results from lattice and perturbative QCD, as well as chiral effective field theory results. From the experimental side, it includes heavy-ion collision and low-energy nuclear physics results, as well as observations from neutron stars and their mergers. The validity of different constraints, concerning specific conditions and ranges of applicability, is also provided.

这篇综述旨在广泛讨论与高密度和热强相互作用物质相关的现代约束条件。它包括来自晶格和微扰 QCD 的第一原理理论结果,以及手性有效场理论结果。在实验方面,它包括重离子碰撞和低能核物理结果,以及对中子星及其合并的观测。此外,还提供了关于具体条件和适用范围的不同约束条件的有效性。
{"title":"Theoretical and experimental constraints for the equation of state of dense and hot matter","authors":"Rajesh Kumar,&nbsp;Veronica Dexheimer,&nbsp;Johannes Jahan,&nbsp;Jorge Noronha,&nbsp;Jacquelyn Noronha-Hostler,&nbsp;Claudia Ratti,&nbsp;Nico Yunes,&nbsp;Angel Rodrigo Nava Acuna,&nbsp;Mark Alford,&nbsp;Mahmudul Hasan Anik,&nbsp;Debarati Chatterjee,&nbsp;Katerina Chatziioannou,&nbsp;Hsin-Yu Chen,&nbsp;Alexander Clevinger,&nbsp;Carlos Conde,&nbsp;Nikolas Cruz-Camacho,&nbsp;Travis Dore,&nbsp;Christian Drischler,&nbsp;Hannah Elfner,&nbsp;Reed Essick,&nbsp;David Friedenberg,&nbsp;Suprovo Ghosh,&nbsp;Joaquin Grefa,&nbsp;Roland Haas,&nbsp;Alexander Haber,&nbsp;Jan Hammelmann,&nbsp;Steven Harris,&nbsp;Carl-Johan Haster,&nbsp;Tetsuo Hatsuda,&nbsp;Mauricio Hippert,&nbsp;Renan Hirayama,&nbsp;Jeremy W. Holt,&nbsp;Micheal Kahangirwe,&nbsp;Jamie Karthein,&nbsp;Toru Kojo,&nbsp;Philippe Landry,&nbsp;Zidu Lin,&nbsp;Matthew Luzum,&nbsp;Timothy Andrew Manning,&nbsp;Jordi Salinas San Martin,&nbsp;Cole Miller,&nbsp;Elias Roland Most,&nbsp;Debora Mroczek,&nbsp;Azwinndini Muronga,&nbsp;Nicolas Patino,&nbsp;Jeffrey Peterson,&nbsp;Christopher Plumberg,&nbsp;Damien Price,&nbsp;Constanca Providencia,&nbsp;Romulo Rougemont,&nbsp;Satyajit Roy,&nbsp;Hitansh Shah,&nbsp;Stuart Shapiro,&nbsp;Andrew W. Steiner,&nbsp;Michael Strickland,&nbsp;Hung Tan,&nbsp;Hajime Togashi,&nbsp;Israel Portillo Vazquez,&nbsp;Pengsheng Wen,&nbsp;Ziyuan Zhang,&nbsp;MUSES Collaboration","doi":"10.1007/s41114-024-00049-6","DOIUrl":"10.1007/s41114-024-00049-6","url":null,"abstract":"<div><p>This review aims at providing an extensive discussion of modern constraints relevant for dense and hot strongly interacting matter. It includes theoretical first-principle results from lattice and perturbative QCD, as well as chiral effective field theory results. From the experimental side, it includes heavy-ion collision and low-energy nuclear physics results, as well as observations from neutron stars and their mergers. The validity of different constraints, concerning specific conditions and ranges of applicability, is also provided.\u0000</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"27 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-024-00049-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141251682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries 广义相对论的哈密顿公式和紧凑双星的后牛顿动力学
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-05-03 DOI: 10.1007/s41114-024-00048-7
Gerhard Schäfer, Piotr Jaranowski

Hamiltonian formalisms provide powerful tools for the computation of approximate analytic solutions of the Einstein field equations. The post-Newtonian computations of the explicit analytic dynamics and motion of compact binaries are discussed within the most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous Hamiltonians is achieved by the transition to Routhians. Order reduction of higher derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of general relativity is introduced for the tackling of compact binaries with spinning components. Compact objects are modeled by use of Dirac delta functions and their derivatives. Consistency is achieved through transition to d-dimensional space and application of dimensional regularization. At the fourth post-Newtonian level, tail contributions to the binding energy show up for the first time. The conservative dynamics of binary systems finds explicit presentation and discussion through the fifth post-Newtonian order for spinless masses. For masses with spin Hamiltonians are known through (next-to)(^3)-leading-order spin-orbit and spin-spin couplings as well as through next-to-leading order cubic and quartic in spin interactions. Parts of those are given explicitly. Tidal-interaction Hamiltonians are considered through (next-to)(^2)-leading post-Newtonian order. The radiation reaction dynamics is presented explicitly through the third-and-half post-Newtonian order for spinless objects, and, for spinning bodies, to leading-order in the spin-orbit and spin1-spin2 couplings. The most important historical issues get pointed out.

哈密顿形式主义为计算爱因斯坦场方程的近似解析解提供了强有力的工具。在最常应用的阿诺维特-戴塞尔-米斯纳形式主义中,讨论了紧凑双星的显式解析动力学和运动的后牛顿计算。通过向 Routhians 过渡,获得了自主哈密顿。高阶导数汉密尔顿的阶次减少导致了标准汉密尔顿。为了解决具有旋转成分的紧凑双星问题,引入了广义相对论的 Tetrad 表示。利用狄拉克三角函数及其导数对紧凑物体进行建模。通过过渡到 d 维空间和应用维正则化实现了一致性。在后牛顿第四级,首次出现了束缚能的尾部贡献。在无自旋质量的牛顿后第五阶,二元系统的保守动力学得到了明确的表述和讨论。对于有自旋的质量,通过(次到)(^3)阶自旋轨道耦合和自旋-自旋耦合,以及次到阶三次和四次自旋相互作用,可以知道哈密顿。其中部分内容已明确给出。潮汐-相互作用的哈密顿数是通过(next-to)(^2)-leading后牛顿阶来考虑的。对于无自旋物体,通过牛顿后三阶半明确给出了辐射反应动力学;对于自旋体,通过自旋轨道和自旋1-自旋2耦合的前导阶给出了辐射反应动力学。指出了最重要的历史问题。
{"title":"Hamiltonian formulation of general relativity and post-Newtonian dynamics of compact binaries","authors":"Gerhard Schäfer,&nbsp;Piotr Jaranowski","doi":"10.1007/s41114-024-00048-7","DOIUrl":"10.1007/s41114-024-00048-7","url":null,"abstract":"<div><p>Hamiltonian formalisms provide powerful tools for the computation of approximate analytic solutions of the Einstein field equations. The post-Newtonian computations of the explicit analytic dynamics and motion of compact binaries are discussed within the most often applied Arnowitt–Deser–Misner formalism. The obtention of autonomous Hamiltonians is achieved by the transition to Routhians. Order reduction of higher derivative Hamiltonians results in standard Hamiltonians. Tetrad representation of general relativity is introduced for the tackling of compact binaries with spinning components. Compact objects are modeled by use of Dirac delta functions and their derivatives. Consistency is achieved through transition to <i>d</i>-dimensional space and application of dimensional regularization. At the fourth post-Newtonian level, tail contributions to the binding energy show up for the first time. The conservative dynamics of binary systems finds explicit presentation and discussion through the fifth post-Newtonian order for spinless masses. For masses with spin Hamiltonians are known through (next-to)<span>(^3)</span>-leading-order spin-orbit and spin-spin couplings as well as through next-to-leading order cubic and quartic in spin interactions. Parts of those are given explicitly. Tidal-interaction Hamiltonians are considered through (next-to)<span>(^2)</span>-leading post-Newtonian order. The radiation reaction dynamics is presented explicitly through the third-and-half post-Newtonian order for spinless objects, and, for spinning bodies, to leading-order in the spin-orbit and spin1-spin2 couplings. The most important historical issues get pointed out.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"27 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-024-00048-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140845974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Testing theories of gravity with planetary ephemerides 用行星星历表检验万有引力理论
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2024-01-29 DOI: 10.1007/s41114-023-00047-0
Agnès Fienga, Olivier Minazzoli

We describe here how planetary ephemerides are built in the framework of General Relativity and how they can be used to test alternative theories. We focus on the definition of the reference frame (space and time) in which the planetary ephemeris is described, the equations of motion that govern the orbits of solar system bodies and electromagnetic waves. After a review on the existing planetary and lunar ephemerides, we summarize the results obtained considering full modifications of the ephemeris framework with direct comparisons with the observations of planetary systems, with a specific attention for the PPN formalism. We then discuss other formalisms such as Einstein-dilaton theories, the massless graviton and MOND. The paper finally concludes on some comments and recommendations regarding misinterpreted measurements of the advance of perihelia.

我们在此介绍如何在广义相对论框架内建立行星星历表,以及如何用它们来检验其他理论。我们将重点放在描述行星星历的参照系(空间和时间)的定义、支配太阳系天体轨道和电磁波的运动方程上。在回顾了现有的行星和月球星历表之后,我们总结了考虑对星历表框架进行全面修改所取得的结果,并与行星系统的观测结果进行了直接比较,特别关注了 PPN 形式。然后,我们讨论了其他形式主义,如爱因斯坦-稀拉顿理论、无质量引力子和 MOND。最后,本文就被误读的近日点进动测量结果提出了一些意见和建议。
{"title":"Testing theories of gravity with planetary ephemerides","authors":"Agnès Fienga,&nbsp;Olivier Minazzoli","doi":"10.1007/s41114-023-00047-0","DOIUrl":"10.1007/s41114-023-00047-0","url":null,"abstract":"<div><p>We describe here how planetary ephemerides are built in the framework of General Relativity and how they can be used to test alternative theories. We focus on the definition of the reference frame (space and time) in which the planetary ephemeris is described, the equations of motion that govern the orbits of solar system bodies and electromagnetic waves. After a review on the existing planetary and lunar ephemerides, we summarize the results obtained considering full modifications of the ephemeris framework with direct comparisons with the observations of planetary systems, with a specific attention for the PPN formalism. We then discuss other formalisms such as Einstein-dilaton theories, the massless graviton and MOND. The paper finally concludes on some comments and recommendations regarding misinterpreted measurements of the advance of perihelia.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"27 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-023-00047-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139574072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cosmology with the Laser Interferometer Space Antenna 空间天线激光干涉宇宙学
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-28 DOI: 10.1007/s41114-023-00045-2
Pierre Auclair, David Bacon, Tessa Baker, Tiago Barreiro, Nicola Bartolo, Enis Belgacem, Nicola Bellomo, Ido Ben-Dayan, Daniele Bertacca, Marc Besancon, Jose J. Blanco-Pillado, Diego Blas, Guillaume Boileau, Gianluca Calcagni, Robert Caldwell, Chiara Caprini, Carmelita Carbone, Chia-Feng Chang, Hsin-Yu Chen, Nelson Christensen, Sebastien Clesse, Denis Comelli, Giuseppe Congedo, Carlo Contaldi, Marco Crisostomi, Djuna Croon, Yanou Cui, Giulia Cusin, Daniel Cutting, Charles Dalang, Valerio De Luca, Walter Del Pozzo, Vincent Desjacques, Emanuela Dimastrogiovanni, Glauber C. Dorsch, Jose Maria Ezquiaga, Matteo Fasiello, Daniel G. Figueroa, Raphael Flauger, Gabriele Franciolini, Noemi Frusciante, Jacopo Fumagalli, Juan García-Bellido, Oliver Gould, Daniel Holz, Laura Iacconi, Rajeev Kumar Jain, Alexander C. Jenkins, Ryusuke Jinno, Cristian Joana, Nikolaos Karnesis, Thomas Konstandin, Kazuya Koyama, Jonathan Kozaczuk, Sachiko Kuroyanagi, Danny Laghi, Marek Lewicki, Lucas Lombriser, Eric Madge, Michele Maggiore, Ameek Malhotra, Michele Mancarella, Vuk Mandic, Alberto Mangiagli, Sabino Matarrese, Anupam Mazumdar, Suvodip Mukherjee, Ilia Musco, Germano Nardini, Jose Miguel No, Theodoros Papanikolaou, Marco Peloso, Mauro Pieroni, Luigi Pilo, Alvise Raccanelli, Sébastien Renaux-Petel, Arianna I. Renzini, Angelo Ricciardone, Antonio Riotto, Joseph D. Romano, Rocco Rollo, Alberto Roper Pol, Ester Ruiz Morales, Mairi Sakellariadou, Ippocratis D. Saltas, Marco Scalisi, Kai Schmitz, Pedro Schwaller, Olga Sergijenko, Geraldine Servant, Peera Simakachorn, Lorenzo Sorbo, Lara Sousa, Lorenzo Speri, Danièle A. Steer, Nicola Tamanini, Gianmassimo Tasinato, Jesús Torrado, Caner Unal, Vincent Vennin, Daniele Vernieri, Filippo Vernizzi, Marta Volonteri, Jeremy M. Wachter, David Wands, Lukas T. Witkowski, Miguel Zumalacárregui, James Annis, Fëanor Reuben Ares, Pedro P. Avelino, Anastasios Avgoustidis, Enrico Barausse, Alexander Bonilla, Camille Bonvin, Pasquale Bosso, Matteo Calabrese, Mesut Çalışkan, Jose A. R. Cembranos, Mikael Chala, David Chernoff, Katy Clough, Alexander Criswell, Saurya Das, Antonio da Silva, Pratika Dayal, Valerie Domcke, Ruth Durrer, Richard Easther, Stephanie Escoffier, Sandrine Ferrans, Chris Fryer, Jonathan Gair, Chris Gordon, Martin Hendry, Mark Hindmarsh, Deanna C. Hooper, Eric Kajfasz, Joachim Kopp, Savvas M. Koushiappas, Utkarsh Kumar, Martin Kunz, Macarena Lagos, Marc Lilley, Joanes Lizarraga, Francisco S. N. Lobo, Azadeh Maleknejad, C. J. A. P. Martins, P. Daniel Meerburg, Renate Meyer, José Pedro Mimoso, Savvas Nesseris, Nelson Nunes, Vasilis Oikonomou, Giorgio Orlando, Ogan Özsoy, Fabio Pacucci, Antonella Palmese, Antoine Petiteau, Lucas Pinol, Simon Portegies Zwart, Geraint Pratten, Tomislav Prokopec, John Quenby, Saeed Rastgoo, Diederik Roest, Kari Rummukainen, Carlo Schimd, Aurélia Secroun, Alberto Sesana, Carlos F. Sopuerta, Ismael Tereno, Andrew Tolley, Jon Urrestilla, Elias C. Vagenas, Jorinde van de Vis, Rien van de Weygaert, Barry Wardell, David J. Weir, Graham White, Bogumiła Świeżewska, Valery I. Zhdanov, The LISA Cosmology Working Group

The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.

激光干涉仪空间天线(LISA)有两个宇宙学关注的科学目标:探测宇宙的膨胀率,了解随机引力波背景及其对早期宇宙和粒子物理学的影响,从MeV到普朗克尺度。然而,引力波观测的潜在宇宙学应用范围远远超出了这两个目标。本出版物概述了LISA宇宙学、理论和方法的最新进展,并确定了利用LISA引力波观测探测宇宙的新机会。
{"title":"Cosmology with the Laser Interferometer Space Antenna","authors":"Pierre Auclair,&nbsp;David Bacon,&nbsp;Tessa Baker,&nbsp;Tiago Barreiro,&nbsp;Nicola Bartolo,&nbsp;Enis Belgacem,&nbsp;Nicola Bellomo,&nbsp;Ido Ben-Dayan,&nbsp;Daniele Bertacca,&nbsp;Marc Besancon,&nbsp;Jose J. Blanco-Pillado,&nbsp;Diego Blas,&nbsp;Guillaume Boileau,&nbsp;Gianluca Calcagni,&nbsp;Robert Caldwell,&nbsp;Chiara Caprini,&nbsp;Carmelita Carbone,&nbsp;Chia-Feng Chang,&nbsp;Hsin-Yu Chen,&nbsp;Nelson Christensen,&nbsp;Sebastien Clesse,&nbsp;Denis Comelli,&nbsp;Giuseppe Congedo,&nbsp;Carlo Contaldi,&nbsp;Marco Crisostomi,&nbsp;Djuna Croon,&nbsp;Yanou Cui,&nbsp;Giulia Cusin,&nbsp;Daniel Cutting,&nbsp;Charles Dalang,&nbsp;Valerio De Luca,&nbsp;Walter Del Pozzo,&nbsp;Vincent Desjacques,&nbsp;Emanuela Dimastrogiovanni,&nbsp;Glauber C. Dorsch,&nbsp;Jose Maria Ezquiaga,&nbsp;Matteo Fasiello,&nbsp;Daniel G. Figueroa,&nbsp;Raphael Flauger,&nbsp;Gabriele Franciolini,&nbsp;Noemi Frusciante,&nbsp;Jacopo Fumagalli,&nbsp;Juan García-Bellido,&nbsp;Oliver Gould,&nbsp;Daniel Holz,&nbsp;Laura Iacconi,&nbsp;Rajeev Kumar Jain,&nbsp;Alexander C. Jenkins,&nbsp;Ryusuke Jinno,&nbsp;Cristian Joana,&nbsp;Nikolaos Karnesis,&nbsp;Thomas Konstandin,&nbsp;Kazuya Koyama,&nbsp;Jonathan Kozaczuk,&nbsp;Sachiko Kuroyanagi,&nbsp;Danny Laghi,&nbsp;Marek Lewicki,&nbsp;Lucas Lombriser,&nbsp;Eric Madge,&nbsp;Michele Maggiore,&nbsp;Ameek Malhotra,&nbsp;Michele Mancarella,&nbsp;Vuk Mandic,&nbsp;Alberto Mangiagli,&nbsp;Sabino Matarrese,&nbsp;Anupam Mazumdar,&nbsp;Suvodip Mukherjee,&nbsp;Ilia Musco,&nbsp;Germano Nardini,&nbsp;Jose Miguel No,&nbsp;Theodoros Papanikolaou,&nbsp;Marco Peloso,&nbsp;Mauro Pieroni,&nbsp;Luigi Pilo,&nbsp;Alvise Raccanelli,&nbsp;Sébastien Renaux-Petel,&nbsp;Arianna I. Renzini,&nbsp;Angelo Ricciardone,&nbsp;Antonio Riotto,&nbsp;Joseph D. Romano,&nbsp;Rocco Rollo,&nbsp;Alberto Roper Pol,&nbsp;Ester Ruiz Morales,&nbsp;Mairi Sakellariadou,&nbsp;Ippocratis D. Saltas,&nbsp;Marco Scalisi,&nbsp;Kai Schmitz,&nbsp;Pedro Schwaller,&nbsp;Olga Sergijenko,&nbsp;Geraldine Servant,&nbsp;Peera Simakachorn,&nbsp;Lorenzo Sorbo,&nbsp;Lara Sousa,&nbsp;Lorenzo Speri,&nbsp;Danièle A. Steer,&nbsp;Nicola Tamanini,&nbsp;Gianmassimo Tasinato,&nbsp;Jesús Torrado,&nbsp;Caner Unal,&nbsp;Vincent Vennin,&nbsp;Daniele Vernieri,&nbsp;Filippo Vernizzi,&nbsp;Marta Volonteri,&nbsp;Jeremy M. Wachter,&nbsp;David Wands,&nbsp;Lukas T. Witkowski,&nbsp;Miguel Zumalacárregui,&nbsp;James Annis,&nbsp;Fëanor Reuben Ares,&nbsp;Pedro P. Avelino,&nbsp;Anastasios Avgoustidis,&nbsp;Enrico Barausse,&nbsp;Alexander Bonilla,&nbsp;Camille Bonvin,&nbsp;Pasquale Bosso,&nbsp;Matteo Calabrese,&nbsp;Mesut Çalışkan,&nbsp;Jose A. R. Cembranos,&nbsp;Mikael Chala,&nbsp;David Chernoff,&nbsp;Katy Clough,&nbsp;Alexander Criswell,&nbsp;Saurya Das,&nbsp;Antonio da Silva,&nbsp;Pratika Dayal,&nbsp;Valerie Domcke,&nbsp;Ruth Durrer,&nbsp;Richard Easther,&nbsp;Stephanie Escoffier,&nbsp;Sandrine Ferrans,&nbsp;Chris Fryer,&nbsp;Jonathan Gair,&nbsp;Chris Gordon,&nbsp;Martin Hendry,&nbsp;Mark Hindmarsh,&nbsp;Deanna C. Hooper,&nbsp;Eric Kajfasz,&nbsp;Joachim Kopp,&nbsp;Savvas M. Koushiappas,&nbsp;Utkarsh Kumar,&nbsp;Martin Kunz,&nbsp;Macarena Lagos,&nbsp;Marc Lilley,&nbsp;Joanes Lizarraga,&nbsp;Francisco S. N. Lobo,&nbsp;Azadeh Maleknejad,&nbsp;C. J. A. P. Martins,&nbsp;P. Daniel Meerburg,&nbsp;Renate Meyer,&nbsp;José Pedro Mimoso,&nbsp;Savvas Nesseris,&nbsp;Nelson Nunes,&nbsp;Vasilis Oikonomou,&nbsp;Giorgio Orlando,&nbsp;Ogan Özsoy,&nbsp;Fabio Pacucci,&nbsp;Antonella Palmese,&nbsp;Antoine Petiteau,&nbsp;Lucas Pinol,&nbsp;Simon Portegies Zwart,&nbsp;Geraint Pratten,&nbsp;Tomislav Prokopec,&nbsp;John Quenby,&nbsp;Saeed Rastgoo,&nbsp;Diederik Roest,&nbsp;Kari Rummukainen,&nbsp;Carlo Schimd,&nbsp;Aurélia Secroun,&nbsp;Alberto Sesana,&nbsp;Carlos F. Sopuerta,&nbsp;Ismael Tereno,&nbsp;Andrew Tolley,&nbsp;Jon Urrestilla,&nbsp;Elias C. Vagenas,&nbsp;Jorinde van de Vis,&nbsp;Rien van de Weygaert,&nbsp;Barry Wardell,&nbsp;David J. Weir,&nbsp;Graham White,&nbsp;Bogumiła Świeżewska,&nbsp;Valery I. Zhdanov,&nbsp;The LISA Cosmology Working Group","doi":"10.1007/s41114-023-00045-2","DOIUrl":"10.1007/s41114-023-00045-2","url":null,"abstract":"<div><p>The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"26 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-023-00045-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71517139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvable models of quantum black holes: a review on Jackiw–Teitelboim gravity 量子黑洞的可解模型:Jackiw-Teitelboim引力综述。
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-07-31 DOI: 10.1007/s41114-023-00046-1
Thomas G. Mertens, Gustavo J. Turiaci

We review recent developments in Jackiw–Teitelboim gravity. This is a simple solvable model of quantum gravity in two dimensions (that arises e.g. from the s-wave sector of higher dimensional gravity systems with spherical symmetry). Due to its solvability, it has proven to be a fruitful toy model to analyze important questions such as the relation between black holes and chaos, the role of wormholes in black hole physics and holography, and the way in which information that falls into a black hole can be recovered.

我们回顾了Jackiw-Titelboim重力的最新发展。这是一个简单可解的二维量子引力模型(例如,它源于具有球对称性的高维引力系统的s波扇区)。由于其可解性,它已被证明是一个富有成效的玩具模型,可以分析黑洞与混沌之间的关系、虫洞在黑洞物理和全息照相中的作用,以及落入黑洞的信息可以如何恢复等重要问题。
{"title":"Solvable models of quantum black holes: a review on Jackiw–Teitelboim gravity","authors":"Thomas G. Mertens,&nbsp;Gustavo J. Turiaci","doi":"10.1007/s41114-023-00046-1","DOIUrl":"10.1007/s41114-023-00046-1","url":null,"abstract":"<div><p>We review recent developments in Jackiw–Teitelboim gravity. This is a simple solvable model of quantum gravity in two dimensions (that arises e.g. from the s-wave sector of higher dimensional gravity systems with spherical symmetry). Due to its solvability, it has proven to be a fruitful toy model to analyze important questions such as the relation between black holes and chaos, the role of wormholes in black hole physics and holography, and the way in which information that falls into a black hole can be recovered.\u0000</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"26 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9987114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Searches for continuous-wave gravitational radiation 寻找连续波重力辐射
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-04-17 DOI: 10.1007/s41114-023-00044-3
Keith Riles

Now that detection of gravitational-wave signals from the coalescence of extra-galactic compact binary star mergers has become nearly routine, it is intriguing to consider other potential gravitational-wave signatures. Here we examine the prospects for discovery of continuous gravitational waves from fast-spinning neutron stars in our own galaxy and from more exotic sources. Potential continuous-wave sources are reviewed, search methodologies and results presented and prospects for imminent discovery discussed.

既然探测到星系外致密双星合并产生的引力波信号几乎已经成为常规,那么考虑其他潜在的引力波信号就很有趣了。在这里,我们研究了在我们自己的星系中从快速旋转的中子星和更多的外来来源发现连续引力波的前景。综述了潜在的连续波源,介绍了搜索方法和结果,并讨论了即将发现的前景。
{"title":"Searches for continuous-wave gravitational radiation","authors":"Keith Riles","doi":"10.1007/s41114-023-00044-3","DOIUrl":"10.1007/s41114-023-00044-3","url":null,"abstract":"<div><p>Now that detection of gravitational-wave signals from the coalescence of extra-galactic compact binary star mergers has become nearly routine, it is intriguing to consider other potential gravitational-wave signatures. Here we examine the prospects for discovery of continuous gravitational waves from fast-spinning neutron stars in our own galaxy and from more exotic sources. Potential continuous-wave sources are reviewed, search methodologies and results presented and prospects for imminent discovery discussed.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"26 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-023-00044-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4670063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Astrophysics with the Laser Interferometer Space Antenna 天体物理学与激光干涉仪空间天线
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-03-14 DOI: 10.1007/s41114-022-00041-y
Pau Amaro-Seoane, Jeff Andrews, Manuel Arca Sedda, Abbas Askar, Quentin Baghi, Razvan Balasov, Imre Bartos, Simone S. Bavera, Jillian Bellovary, Christopher P. L. Berry, Emanuele Berti, Stefano Bianchi, Laura Blecha, Stéphane Blondin, Tamara Bogdanović, Samuel Boissier, Matteo Bonetti, Silvia Bonoli, Elisa Bortolas, Katelyn Breivik, Pedro R. Capelo, Laurentiu Caramete, Federico Cattorini, Maria Charisi, Sylvain Chaty, Xian Chen, Martyna Chruślińska, Alvin J. K. Chua, Ross Church, Monica Colpi, Daniel D’Orazio, Camilla Danielski, Melvyn B. Davies, Pratika Dayal, Alessandra De Rosa, Andrea Derdzinski, Kyriakos Destounis, Massimo Dotti, Ioana Duţan, Irina Dvorkin, Gaia Fabj, Thierry Foglizzo, Saavik Ford, Jean-Baptiste Fouvry, Alessia Franchini, Tassos Fragos, Chris Fryer, Massimo Gaspari, Davide Gerosa, Luca Graziani, Paul Groot, Melanie Habouzit, Daryl Haggard, Zoltan Haiman, Wen-Biao Han, Alina Istrate, Peter H. Johansson, Fazeel Mahmood Khan, Tomas Kimpson, Kostas Kokkotas, Albert Kong, Valeriya Korol, Kyle Kremer, Thomas Kupfer, Astrid Lamberts, Shane Larson, Mike Lau, Dongliang Liu, Nicole Lloyd-Ronning, Giuseppe Lodato, Alessandro Lupi, Chung-Pei Ma, Tomas Maccarone, Ilya Mandel, Alberto Mangiagli, Michela Mapelli, Stéphane Mathis, Lucio Mayer, Sean McGee, Berry McKernan, M. Coleman Miller, David F. Mota, Matthew Mumpower, Syeda S. Nasim, Gijs Nelemans, Scott Noble, Fabio Pacucci, Francesca Panessa, Vasileios Paschalidis, Hugo Pfister, Delphine Porquet, John Quenby, Angelo Ricarte, Friedrich K. Röpke, John Regan, Stephan Rosswog, Ashley Ruiter, Milton Ruiz, Jessie Runnoe, Raffaella Schneider, Jeremy Schnittman, Amy Secunda, Alberto Sesana, Naoki Seto, Lijing Shao, Stuart Shapiro, Carlos Sopuerta, Nicholas C. Stone, Arthur Suvorov, Nicola Tamanini, Tomas Tamfal, Thomas Tauris, Karel Temmink, John Tomsick, Silvia Toonen, Alejandro Torres-Orjuela, Martina Toscani, Antonios Tsokaros, Caner Unal, Verónica Vázquez-Aceves, Rosa Valiante, Maurice van Putten, Jan van Roestel, Christian Vignali, Marta Volonteri, Kinwah Wu, Ziri Younsi, Shenghua Yu, Silvia Zane, Lorenz Zwick, Fabio Antonini, Vishal Baibhav, Enrico Barausse, Alexander Bonilla Rivera, Marica Branchesi, Graziella Branduardi-Raymont, Kevin Burdge, Srija Chakraborty, Jorge Cuadra, Kristen Dage, Benjamin Davis, Selma E. de Mink, Roberto Decarli, Daniela Doneva, Stephanie Escoffier, Poshak Gandhi, Francesco Haardt, Carlos O. Lousto, Samaya Nissanke, Jason Nordhaus, Richard O’Shaughnessy, Simon Portegies Zwart, Adam Pound, Fabian Schussler, Olga Sergijenko, Alessandro Spallicci, Daniele Vernieri, Alejandro Vigna-Gómez

The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.

激光干涉仪空间天线(LISA)将是引力波天文学的一个变革性实验,因此,它将以一种全新的方式提供独特的机会来解决许多关键的天体物理问题。通过实现多信使观测,与地面和太空仪器在电磁领域的协同作用将进一步增加LISA的发现潜力。接下来的十年是为LISA的首次观测做准备的关键时期。这篇综述概述了天体物理理论,数值模拟和天文观测的广泛景观,这些都是建模和解释即将到来的LISA数据流的工具。为此,本文回顾了目前LISA的三个主要源类的知识;超紧凑的恒星质量双星,大质量黑洞双星,以及极端或中等质量比的吸气。总结了相关的天体物理过程和已建立的模拟技术。同样,我们对这些来源的理解中存在的问题和差距也被强调了出来,并指出了LISA如何帮助在不同领域取得进展。LISA本身的新研究途径,或者它与即将到来的电磁领域研究的联合开发,将使,也说明。讨论了建模和分析方法的改进,如数值模拟和现代数据科学技术的结合。这篇综述旨在为利用LISA作为了解我们宇宙的新发现工具提供一个起点。
{"title":"Astrophysics with the Laser Interferometer Space Antenna","authors":"Pau Amaro-Seoane,&nbsp;Jeff Andrews,&nbsp;Manuel Arca Sedda,&nbsp;Abbas Askar,&nbsp;Quentin Baghi,&nbsp;Razvan Balasov,&nbsp;Imre Bartos,&nbsp;Simone S. Bavera,&nbsp;Jillian Bellovary,&nbsp;Christopher P. L. Berry,&nbsp;Emanuele Berti,&nbsp;Stefano Bianchi,&nbsp;Laura Blecha,&nbsp;Stéphane Blondin,&nbsp;Tamara Bogdanović,&nbsp;Samuel Boissier,&nbsp;Matteo Bonetti,&nbsp;Silvia Bonoli,&nbsp;Elisa Bortolas,&nbsp;Katelyn Breivik,&nbsp;Pedro R. Capelo,&nbsp;Laurentiu Caramete,&nbsp;Federico Cattorini,&nbsp;Maria Charisi,&nbsp;Sylvain Chaty,&nbsp;Xian Chen,&nbsp;Martyna Chruślińska,&nbsp;Alvin J. K. Chua,&nbsp;Ross Church,&nbsp;Monica Colpi,&nbsp;Daniel D’Orazio,&nbsp;Camilla Danielski,&nbsp;Melvyn B. Davies,&nbsp;Pratika Dayal,&nbsp;Alessandra De Rosa,&nbsp;Andrea Derdzinski,&nbsp;Kyriakos Destounis,&nbsp;Massimo Dotti,&nbsp;Ioana Duţan,&nbsp;Irina Dvorkin,&nbsp;Gaia Fabj,&nbsp;Thierry Foglizzo,&nbsp;Saavik Ford,&nbsp;Jean-Baptiste Fouvry,&nbsp;Alessia Franchini,&nbsp;Tassos Fragos,&nbsp;Chris Fryer,&nbsp;Massimo Gaspari,&nbsp;Davide Gerosa,&nbsp;Luca Graziani,&nbsp;Paul Groot,&nbsp;Melanie Habouzit,&nbsp;Daryl Haggard,&nbsp;Zoltan Haiman,&nbsp;Wen-Biao Han,&nbsp;Alina Istrate,&nbsp;Peter H. Johansson,&nbsp;Fazeel Mahmood Khan,&nbsp;Tomas Kimpson,&nbsp;Kostas Kokkotas,&nbsp;Albert Kong,&nbsp;Valeriya Korol,&nbsp;Kyle Kremer,&nbsp;Thomas Kupfer,&nbsp;Astrid Lamberts,&nbsp;Shane Larson,&nbsp;Mike Lau,&nbsp;Dongliang Liu,&nbsp;Nicole Lloyd-Ronning,&nbsp;Giuseppe Lodato,&nbsp;Alessandro Lupi,&nbsp;Chung-Pei Ma,&nbsp;Tomas Maccarone,&nbsp;Ilya Mandel,&nbsp;Alberto Mangiagli,&nbsp;Michela Mapelli,&nbsp;Stéphane Mathis,&nbsp;Lucio Mayer,&nbsp;Sean McGee,&nbsp;Berry McKernan,&nbsp;M. Coleman Miller,&nbsp;David F. Mota,&nbsp;Matthew Mumpower,&nbsp;Syeda S. Nasim,&nbsp;Gijs Nelemans,&nbsp;Scott Noble,&nbsp;Fabio Pacucci,&nbsp;Francesca Panessa,&nbsp;Vasileios Paschalidis,&nbsp;Hugo Pfister,&nbsp;Delphine Porquet,&nbsp;John Quenby,&nbsp;Angelo Ricarte,&nbsp;Friedrich K. Röpke,&nbsp;John Regan,&nbsp;Stephan Rosswog,&nbsp;Ashley Ruiter,&nbsp;Milton Ruiz,&nbsp;Jessie Runnoe,&nbsp;Raffaella Schneider,&nbsp;Jeremy Schnittman,&nbsp;Amy Secunda,&nbsp;Alberto Sesana,&nbsp;Naoki Seto,&nbsp;Lijing Shao,&nbsp;Stuart Shapiro,&nbsp;Carlos Sopuerta,&nbsp;Nicholas C. Stone,&nbsp;Arthur Suvorov,&nbsp;Nicola Tamanini,&nbsp;Tomas Tamfal,&nbsp;Thomas Tauris,&nbsp;Karel Temmink,&nbsp;John Tomsick,&nbsp;Silvia Toonen,&nbsp;Alejandro Torres-Orjuela,&nbsp;Martina Toscani,&nbsp;Antonios Tsokaros,&nbsp;Caner Unal,&nbsp;Verónica Vázquez-Aceves,&nbsp;Rosa Valiante,&nbsp;Maurice van Putten,&nbsp;Jan van Roestel,&nbsp;Christian Vignali,&nbsp;Marta Volonteri,&nbsp;Kinwah Wu,&nbsp;Ziri Younsi,&nbsp;Shenghua Yu,&nbsp;Silvia Zane,&nbsp;Lorenz Zwick,&nbsp;Fabio Antonini,&nbsp;Vishal Baibhav,&nbsp;Enrico Barausse,&nbsp;Alexander Bonilla Rivera,&nbsp;Marica Branchesi,&nbsp;Graziella Branduardi-Raymont,&nbsp;Kevin Burdge,&nbsp;Srija Chakraborty,&nbsp;Jorge Cuadra,&nbsp;Kristen Dage,&nbsp;Benjamin Davis,&nbsp;Selma E. de Mink,&nbsp;Roberto Decarli,&nbsp;Daniela Doneva,&nbsp;Stephanie Escoffier,&nbsp;Poshak Gandhi,&nbsp;Francesco Haardt,&nbsp;Carlos O. Lousto,&nbsp;Samaya Nissanke,&nbsp;Jason Nordhaus,&nbsp;Richard O’Shaughnessy,&nbsp;Simon Portegies Zwart,&nbsp;Adam Pound,&nbsp;Fabian Schussler,&nbsp;Olga Sergijenko,&nbsp;Alessandro Spallicci,&nbsp;Daniele Vernieri,&nbsp;Alejandro Vigna-Gómez","doi":"10.1007/s41114-022-00041-y","DOIUrl":"10.1007/s41114-022-00041-y","url":null,"abstract":"<div><p>The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"26 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-022-00041-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4582461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 89
期刊
Living Reviews in Relativity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1