首页 > 最新文献

Living Reviews in Relativity最新文献

英文 中文
Cosmology with the Laser Interferometer Space Antenna 空间天线激光干涉宇宙学
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-08-28 DOI: 10.1007/s41114-023-00045-2
Pierre Auclair, David Bacon, Tessa Baker, Tiago Barreiro, Nicola Bartolo, Enis Belgacem, Nicola Bellomo, Ido Ben-Dayan, Daniele Bertacca, Marc Besancon, Jose J. Blanco-Pillado, Diego Blas, Guillaume Boileau, Gianluca Calcagni, Robert Caldwell, Chiara Caprini, Carmelita Carbone, Chia-Feng Chang, Hsin-Yu Chen, Nelson Christensen, Sebastien Clesse, Denis Comelli, Giuseppe Congedo, Carlo Contaldi, Marco Crisostomi, Djuna Croon, Yanou Cui, Giulia Cusin, Daniel Cutting, Charles Dalang, Valerio De Luca, Walter Del Pozzo, Vincent Desjacques, Emanuela Dimastrogiovanni, Glauber C. Dorsch, Jose Maria Ezquiaga, Matteo Fasiello, Daniel G. Figueroa, Raphael Flauger, Gabriele Franciolini, Noemi Frusciante, Jacopo Fumagalli, Juan García-Bellido, Oliver Gould, Daniel Holz, Laura Iacconi, Rajeev Kumar Jain, Alexander C. Jenkins, Ryusuke Jinno, Cristian Joana, Nikolaos Karnesis, Thomas Konstandin, Kazuya Koyama, Jonathan Kozaczuk, Sachiko Kuroyanagi, Danny Laghi, Marek Lewicki, Lucas Lombriser, Eric Madge, Michele Maggiore, Ameek Malhotra, Michele Mancarella, Vuk Mandic, Alberto Mangiagli, Sabino Matarrese, Anupam Mazumdar, Suvodip Mukherjee, Ilia Musco, Germano Nardini, Jose Miguel No, Theodoros Papanikolaou, Marco Peloso, Mauro Pieroni, Luigi Pilo, Alvise Raccanelli, Sébastien Renaux-Petel, Arianna I. Renzini, Angelo Ricciardone, Antonio Riotto, Joseph D. Romano, Rocco Rollo, Alberto Roper Pol, Ester Ruiz Morales, Mairi Sakellariadou, Ippocratis D. Saltas, Marco Scalisi, Kai Schmitz, Pedro Schwaller, Olga Sergijenko, Geraldine Servant, Peera Simakachorn, Lorenzo Sorbo, Lara Sousa, Lorenzo Speri, Danièle A. Steer, Nicola Tamanini, Gianmassimo Tasinato, Jesús Torrado, Caner Unal, Vincent Vennin, Daniele Vernieri, Filippo Vernizzi, Marta Volonteri, Jeremy M. Wachter, David Wands, Lukas T. Witkowski, Miguel Zumalacárregui, James Annis, Fëanor Reuben Ares, Pedro P. Avelino, Anastasios Avgoustidis, Enrico Barausse, Alexander Bonilla, Camille Bonvin, Pasquale Bosso, Matteo Calabrese, Mesut Çalışkan, Jose A. R. Cembranos, Mikael Chala, David Chernoff, Katy Clough, Alexander Criswell, Saurya Das, Antonio da Silva, Pratika Dayal, Valerie Domcke, Ruth Durrer, Richard Easther, Stephanie Escoffier, Sandrine Ferrans, Chris Fryer, Jonathan Gair, Chris Gordon, Martin Hendry, Mark Hindmarsh, Deanna C. Hooper, Eric Kajfasz, Joachim Kopp, Savvas M. Koushiappas, Utkarsh Kumar, Martin Kunz, Macarena Lagos, Marc Lilley, Joanes Lizarraga, Francisco S. N. Lobo, Azadeh Maleknejad, C. J. A. P. Martins, P. Daniel Meerburg, Renate Meyer, José Pedro Mimoso, Savvas Nesseris, Nelson Nunes, Vasilis Oikonomou, Giorgio Orlando, Ogan Özsoy, Fabio Pacucci, Antonella Palmese, Antoine Petiteau, Lucas Pinol, Simon Portegies Zwart, Geraint Pratten, Tomislav Prokopec, John Quenby, Saeed Rastgoo, Diederik Roest, Kari Rummukainen, Carlo Schimd, Aurélia Secroun, Alberto Sesana, Carlos F. Sopuerta, Ismael Tereno, Andrew Tolley, Jon Urrestilla, Elias C. Vagenas, Jorinde van de Vis, Rien van de Weygaert, Barry Wardell, David J. Weir, Graham White, Bogumiła Świeżewska, Valery I. Zhdanov, The LISA Cosmology Working Group

The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.

激光干涉仪空间天线(LISA)有两个宇宙学关注的科学目标:探测宇宙的膨胀率,了解随机引力波背景及其对早期宇宙和粒子物理学的影响,从MeV到普朗克尺度。然而,引力波观测的潜在宇宙学应用范围远远超出了这两个目标。本出版物概述了LISA宇宙学、理论和方法的最新进展,并确定了利用LISA引力波观测探测宇宙的新机会。
{"title":"Cosmology with the Laser Interferometer Space Antenna","authors":"Pierre Auclair,&nbsp;David Bacon,&nbsp;Tessa Baker,&nbsp;Tiago Barreiro,&nbsp;Nicola Bartolo,&nbsp;Enis Belgacem,&nbsp;Nicola Bellomo,&nbsp;Ido Ben-Dayan,&nbsp;Daniele Bertacca,&nbsp;Marc Besancon,&nbsp;Jose J. Blanco-Pillado,&nbsp;Diego Blas,&nbsp;Guillaume Boileau,&nbsp;Gianluca Calcagni,&nbsp;Robert Caldwell,&nbsp;Chiara Caprini,&nbsp;Carmelita Carbone,&nbsp;Chia-Feng Chang,&nbsp;Hsin-Yu Chen,&nbsp;Nelson Christensen,&nbsp;Sebastien Clesse,&nbsp;Denis Comelli,&nbsp;Giuseppe Congedo,&nbsp;Carlo Contaldi,&nbsp;Marco Crisostomi,&nbsp;Djuna Croon,&nbsp;Yanou Cui,&nbsp;Giulia Cusin,&nbsp;Daniel Cutting,&nbsp;Charles Dalang,&nbsp;Valerio De Luca,&nbsp;Walter Del Pozzo,&nbsp;Vincent Desjacques,&nbsp;Emanuela Dimastrogiovanni,&nbsp;Glauber C. Dorsch,&nbsp;Jose Maria Ezquiaga,&nbsp;Matteo Fasiello,&nbsp;Daniel G. Figueroa,&nbsp;Raphael Flauger,&nbsp;Gabriele Franciolini,&nbsp;Noemi Frusciante,&nbsp;Jacopo Fumagalli,&nbsp;Juan García-Bellido,&nbsp;Oliver Gould,&nbsp;Daniel Holz,&nbsp;Laura Iacconi,&nbsp;Rajeev Kumar Jain,&nbsp;Alexander C. Jenkins,&nbsp;Ryusuke Jinno,&nbsp;Cristian Joana,&nbsp;Nikolaos Karnesis,&nbsp;Thomas Konstandin,&nbsp;Kazuya Koyama,&nbsp;Jonathan Kozaczuk,&nbsp;Sachiko Kuroyanagi,&nbsp;Danny Laghi,&nbsp;Marek Lewicki,&nbsp;Lucas Lombriser,&nbsp;Eric Madge,&nbsp;Michele Maggiore,&nbsp;Ameek Malhotra,&nbsp;Michele Mancarella,&nbsp;Vuk Mandic,&nbsp;Alberto Mangiagli,&nbsp;Sabino Matarrese,&nbsp;Anupam Mazumdar,&nbsp;Suvodip Mukherjee,&nbsp;Ilia Musco,&nbsp;Germano Nardini,&nbsp;Jose Miguel No,&nbsp;Theodoros Papanikolaou,&nbsp;Marco Peloso,&nbsp;Mauro Pieroni,&nbsp;Luigi Pilo,&nbsp;Alvise Raccanelli,&nbsp;Sébastien Renaux-Petel,&nbsp;Arianna I. Renzini,&nbsp;Angelo Ricciardone,&nbsp;Antonio Riotto,&nbsp;Joseph D. Romano,&nbsp;Rocco Rollo,&nbsp;Alberto Roper Pol,&nbsp;Ester Ruiz Morales,&nbsp;Mairi Sakellariadou,&nbsp;Ippocratis D. Saltas,&nbsp;Marco Scalisi,&nbsp;Kai Schmitz,&nbsp;Pedro Schwaller,&nbsp;Olga Sergijenko,&nbsp;Geraldine Servant,&nbsp;Peera Simakachorn,&nbsp;Lorenzo Sorbo,&nbsp;Lara Sousa,&nbsp;Lorenzo Speri,&nbsp;Danièle A. Steer,&nbsp;Nicola Tamanini,&nbsp;Gianmassimo Tasinato,&nbsp;Jesús Torrado,&nbsp;Caner Unal,&nbsp;Vincent Vennin,&nbsp;Daniele Vernieri,&nbsp;Filippo Vernizzi,&nbsp;Marta Volonteri,&nbsp;Jeremy M. Wachter,&nbsp;David Wands,&nbsp;Lukas T. Witkowski,&nbsp;Miguel Zumalacárregui,&nbsp;James Annis,&nbsp;Fëanor Reuben Ares,&nbsp;Pedro P. Avelino,&nbsp;Anastasios Avgoustidis,&nbsp;Enrico Barausse,&nbsp;Alexander Bonilla,&nbsp;Camille Bonvin,&nbsp;Pasquale Bosso,&nbsp;Matteo Calabrese,&nbsp;Mesut Çalışkan,&nbsp;Jose A. R. Cembranos,&nbsp;Mikael Chala,&nbsp;David Chernoff,&nbsp;Katy Clough,&nbsp;Alexander Criswell,&nbsp;Saurya Das,&nbsp;Antonio da Silva,&nbsp;Pratika Dayal,&nbsp;Valerie Domcke,&nbsp;Ruth Durrer,&nbsp;Richard Easther,&nbsp;Stephanie Escoffier,&nbsp;Sandrine Ferrans,&nbsp;Chris Fryer,&nbsp;Jonathan Gair,&nbsp;Chris Gordon,&nbsp;Martin Hendry,&nbsp;Mark Hindmarsh,&nbsp;Deanna C. Hooper,&nbsp;Eric Kajfasz,&nbsp;Joachim Kopp,&nbsp;Savvas M. Koushiappas,&nbsp;Utkarsh Kumar,&nbsp;Martin Kunz,&nbsp;Macarena Lagos,&nbsp;Marc Lilley,&nbsp;Joanes Lizarraga,&nbsp;Francisco S. N. Lobo,&nbsp;Azadeh Maleknejad,&nbsp;C. J. A. P. Martins,&nbsp;P. Daniel Meerburg,&nbsp;Renate Meyer,&nbsp;José Pedro Mimoso,&nbsp;Savvas Nesseris,&nbsp;Nelson Nunes,&nbsp;Vasilis Oikonomou,&nbsp;Giorgio Orlando,&nbsp;Ogan Özsoy,&nbsp;Fabio Pacucci,&nbsp;Antonella Palmese,&nbsp;Antoine Petiteau,&nbsp;Lucas Pinol,&nbsp;Simon Portegies Zwart,&nbsp;Geraint Pratten,&nbsp;Tomislav Prokopec,&nbsp;John Quenby,&nbsp;Saeed Rastgoo,&nbsp;Diederik Roest,&nbsp;Kari Rummukainen,&nbsp;Carlo Schimd,&nbsp;Aurélia Secroun,&nbsp;Alberto Sesana,&nbsp;Carlos F. Sopuerta,&nbsp;Ismael Tereno,&nbsp;Andrew Tolley,&nbsp;Jon Urrestilla,&nbsp;Elias C. Vagenas,&nbsp;Jorinde van de Vis,&nbsp;Rien van de Weygaert,&nbsp;Barry Wardell,&nbsp;David J. Weir,&nbsp;Graham White,&nbsp;Bogumiła Świeżewska,&nbsp;Valery I. Zhdanov,&nbsp;The LISA Cosmology Working Group","doi":"10.1007/s41114-023-00045-2","DOIUrl":"10.1007/s41114-023-00045-2","url":null,"abstract":"<div><p>The Laser Interferometer Space Antenna (LISA) has two scientific objectives of cosmological focus: to probe the expansion rate of the universe, and to understand stochastic gravitational-wave backgrounds and their implications for early universe and particle physics, from the MeV to the Planck scale. However, the range of potential cosmological applications of gravitational-wave observations extends well beyond these two objectives. This publication presents a summary of the state of the art in LISA cosmology, theory and methods, and identifies new opportunities to use gravitational-wave observations by LISA to probe the universe.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"26 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-023-00045-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71517139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Solvable models of quantum black holes: a review on Jackiw–Teitelboim gravity 量子黑洞的可解模型:Jackiw-Teitelboim引力综述。
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-07-31 DOI: 10.1007/s41114-023-00046-1
Thomas G. Mertens, Gustavo J. Turiaci

We review recent developments in Jackiw–Teitelboim gravity. This is a simple solvable model of quantum gravity in two dimensions (that arises e.g. from the s-wave sector of higher dimensional gravity systems with spherical symmetry). Due to its solvability, it has proven to be a fruitful toy model to analyze important questions such as the relation between black holes and chaos, the role of wormholes in black hole physics and holography, and the way in which information that falls into a black hole can be recovered.

我们回顾了Jackiw-Titelboim重力的最新发展。这是一个简单可解的二维量子引力模型(例如,它源于具有球对称性的高维引力系统的s波扇区)。由于其可解性,它已被证明是一个富有成效的玩具模型,可以分析黑洞与混沌之间的关系、虫洞在黑洞物理和全息照相中的作用,以及落入黑洞的信息可以如何恢复等重要问题。
{"title":"Solvable models of quantum black holes: a review on Jackiw–Teitelboim gravity","authors":"Thomas G. Mertens,&nbsp;Gustavo J. Turiaci","doi":"10.1007/s41114-023-00046-1","DOIUrl":"10.1007/s41114-023-00046-1","url":null,"abstract":"<div><p>We review recent developments in Jackiw–Teitelboim gravity. This is a simple solvable model of quantum gravity in two dimensions (that arises e.g. from the s-wave sector of higher dimensional gravity systems with spherical symmetry). Due to its solvability, it has proven to be a fruitful toy model to analyze important questions such as the relation between black holes and chaos, the role of wormholes in black hole physics and holography, and the way in which information that falls into a black hole can be recovered.\u0000</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"26 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10390458/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9987114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Searches for continuous-wave gravitational radiation 寻找连续波重力辐射
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-04-17 DOI: 10.1007/s41114-023-00044-3
Keith Riles

Now that detection of gravitational-wave signals from the coalescence of extra-galactic compact binary star mergers has become nearly routine, it is intriguing to consider other potential gravitational-wave signatures. Here we examine the prospects for discovery of continuous gravitational waves from fast-spinning neutron stars in our own galaxy and from more exotic sources. Potential continuous-wave sources are reviewed, search methodologies and results presented and prospects for imminent discovery discussed.

既然探测到星系外致密双星合并产生的引力波信号几乎已经成为常规,那么考虑其他潜在的引力波信号就很有趣了。在这里,我们研究了在我们自己的星系中从快速旋转的中子星和更多的外来来源发现连续引力波的前景。综述了潜在的连续波源,介绍了搜索方法和结果,并讨论了即将发现的前景。
{"title":"Searches for continuous-wave gravitational radiation","authors":"Keith Riles","doi":"10.1007/s41114-023-00044-3","DOIUrl":"10.1007/s41114-023-00044-3","url":null,"abstract":"<div><p>Now that detection of gravitational-wave signals from the coalescence of extra-galactic compact binary star mergers has become nearly routine, it is intriguing to consider other potential gravitational-wave signatures. Here we examine the prospects for discovery of continuous gravitational waves from fast-spinning neutron stars in our own galaxy and from more exotic sources. Potential continuous-wave sources are reviewed, search methodologies and results presented and prospects for imminent discovery discussed.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"26 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-023-00044-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4670063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Astrophysics with the Laser Interferometer Space Antenna 天体物理学与激光干涉仪空间天线
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-03-14 DOI: 10.1007/s41114-022-00041-y
Pau Amaro-Seoane, Jeff Andrews, Manuel Arca Sedda, Abbas Askar, Quentin Baghi, Razvan Balasov, Imre Bartos, Simone S. Bavera, Jillian Bellovary, Christopher P. L. Berry, Emanuele Berti, Stefano Bianchi, Laura Blecha, Stéphane Blondin, Tamara Bogdanović, Samuel Boissier, Matteo Bonetti, Silvia Bonoli, Elisa Bortolas, Katelyn Breivik, Pedro R. Capelo, Laurentiu Caramete, Federico Cattorini, Maria Charisi, Sylvain Chaty, Xian Chen, Martyna Chruślińska, Alvin J. K. Chua, Ross Church, Monica Colpi, Daniel D’Orazio, Camilla Danielski, Melvyn B. Davies, Pratika Dayal, Alessandra De Rosa, Andrea Derdzinski, Kyriakos Destounis, Massimo Dotti, Ioana Duţan, Irina Dvorkin, Gaia Fabj, Thierry Foglizzo, Saavik Ford, Jean-Baptiste Fouvry, Alessia Franchini, Tassos Fragos, Chris Fryer, Massimo Gaspari, Davide Gerosa, Luca Graziani, Paul Groot, Melanie Habouzit, Daryl Haggard, Zoltan Haiman, Wen-Biao Han, Alina Istrate, Peter H. Johansson, Fazeel Mahmood Khan, Tomas Kimpson, Kostas Kokkotas, Albert Kong, Valeriya Korol, Kyle Kremer, Thomas Kupfer, Astrid Lamberts, Shane Larson, Mike Lau, Dongliang Liu, Nicole Lloyd-Ronning, Giuseppe Lodato, Alessandro Lupi, Chung-Pei Ma, Tomas Maccarone, Ilya Mandel, Alberto Mangiagli, Michela Mapelli, Stéphane Mathis, Lucio Mayer, Sean McGee, Berry McKernan, M. Coleman Miller, David F. Mota, Matthew Mumpower, Syeda S. Nasim, Gijs Nelemans, Scott Noble, Fabio Pacucci, Francesca Panessa, Vasileios Paschalidis, Hugo Pfister, Delphine Porquet, John Quenby, Angelo Ricarte, Friedrich K. Röpke, John Regan, Stephan Rosswog, Ashley Ruiter, Milton Ruiz, Jessie Runnoe, Raffaella Schneider, Jeremy Schnittman, Amy Secunda, Alberto Sesana, Naoki Seto, Lijing Shao, Stuart Shapiro, Carlos Sopuerta, Nicholas C. Stone, Arthur Suvorov, Nicola Tamanini, Tomas Tamfal, Thomas Tauris, Karel Temmink, John Tomsick, Silvia Toonen, Alejandro Torres-Orjuela, Martina Toscani, Antonios Tsokaros, Caner Unal, Verónica Vázquez-Aceves, Rosa Valiante, Maurice van Putten, Jan van Roestel, Christian Vignali, Marta Volonteri, Kinwah Wu, Ziri Younsi, Shenghua Yu, Silvia Zane, Lorenz Zwick, Fabio Antonini, Vishal Baibhav, Enrico Barausse, Alexander Bonilla Rivera, Marica Branchesi, Graziella Branduardi-Raymont, Kevin Burdge, Srija Chakraborty, Jorge Cuadra, Kristen Dage, Benjamin Davis, Selma E. de Mink, Roberto Decarli, Daniela Doneva, Stephanie Escoffier, Poshak Gandhi, Francesco Haardt, Carlos O. Lousto, Samaya Nissanke, Jason Nordhaus, Richard O’Shaughnessy, Simon Portegies Zwart, Adam Pound, Fabian Schussler, Olga Sergijenko, Alessandro Spallicci, Daniele Vernieri, Alejandro Vigna-Gómez

The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.

激光干涉仪空间天线(LISA)将是引力波天文学的一个变革性实验,因此,它将以一种全新的方式提供独特的机会来解决许多关键的天体物理问题。通过实现多信使观测,与地面和太空仪器在电磁领域的协同作用将进一步增加LISA的发现潜力。接下来的十年是为LISA的首次观测做准备的关键时期。这篇综述概述了天体物理理论,数值模拟和天文观测的广泛景观,这些都是建模和解释即将到来的LISA数据流的工具。为此,本文回顾了目前LISA的三个主要源类的知识;超紧凑的恒星质量双星,大质量黑洞双星,以及极端或中等质量比的吸气。总结了相关的天体物理过程和已建立的模拟技术。同样,我们对这些来源的理解中存在的问题和差距也被强调了出来,并指出了LISA如何帮助在不同领域取得进展。LISA本身的新研究途径,或者它与即将到来的电磁领域研究的联合开发,将使,也说明。讨论了建模和分析方法的改进,如数值模拟和现代数据科学技术的结合。这篇综述旨在为利用LISA作为了解我们宇宙的新发现工具提供一个起点。
{"title":"Astrophysics with the Laser Interferometer Space Antenna","authors":"Pau Amaro-Seoane,&nbsp;Jeff Andrews,&nbsp;Manuel Arca Sedda,&nbsp;Abbas Askar,&nbsp;Quentin Baghi,&nbsp;Razvan Balasov,&nbsp;Imre Bartos,&nbsp;Simone S. Bavera,&nbsp;Jillian Bellovary,&nbsp;Christopher P. L. Berry,&nbsp;Emanuele Berti,&nbsp;Stefano Bianchi,&nbsp;Laura Blecha,&nbsp;Stéphane Blondin,&nbsp;Tamara Bogdanović,&nbsp;Samuel Boissier,&nbsp;Matteo Bonetti,&nbsp;Silvia Bonoli,&nbsp;Elisa Bortolas,&nbsp;Katelyn Breivik,&nbsp;Pedro R. Capelo,&nbsp;Laurentiu Caramete,&nbsp;Federico Cattorini,&nbsp;Maria Charisi,&nbsp;Sylvain Chaty,&nbsp;Xian Chen,&nbsp;Martyna Chruślińska,&nbsp;Alvin J. K. Chua,&nbsp;Ross Church,&nbsp;Monica Colpi,&nbsp;Daniel D’Orazio,&nbsp;Camilla Danielski,&nbsp;Melvyn B. Davies,&nbsp;Pratika Dayal,&nbsp;Alessandra De Rosa,&nbsp;Andrea Derdzinski,&nbsp;Kyriakos Destounis,&nbsp;Massimo Dotti,&nbsp;Ioana Duţan,&nbsp;Irina Dvorkin,&nbsp;Gaia Fabj,&nbsp;Thierry Foglizzo,&nbsp;Saavik Ford,&nbsp;Jean-Baptiste Fouvry,&nbsp;Alessia Franchini,&nbsp;Tassos Fragos,&nbsp;Chris Fryer,&nbsp;Massimo Gaspari,&nbsp;Davide Gerosa,&nbsp;Luca Graziani,&nbsp;Paul Groot,&nbsp;Melanie Habouzit,&nbsp;Daryl Haggard,&nbsp;Zoltan Haiman,&nbsp;Wen-Biao Han,&nbsp;Alina Istrate,&nbsp;Peter H. Johansson,&nbsp;Fazeel Mahmood Khan,&nbsp;Tomas Kimpson,&nbsp;Kostas Kokkotas,&nbsp;Albert Kong,&nbsp;Valeriya Korol,&nbsp;Kyle Kremer,&nbsp;Thomas Kupfer,&nbsp;Astrid Lamberts,&nbsp;Shane Larson,&nbsp;Mike Lau,&nbsp;Dongliang Liu,&nbsp;Nicole Lloyd-Ronning,&nbsp;Giuseppe Lodato,&nbsp;Alessandro Lupi,&nbsp;Chung-Pei Ma,&nbsp;Tomas Maccarone,&nbsp;Ilya Mandel,&nbsp;Alberto Mangiagli,&nbsp;Michela Mapelli,&nbsp;Stéphane Mathis,&nbsp;Lucio Mayer,&nbsp;Sean McGee,&nbsp;Berry McKernan,&nbsp;M. Coleman Miller,&nbsp;David F. Mota,&nbsp;Matthew Mumpower,&nbsp;Syeda S. Nasim,&nbsp;Gijs Nelemans,&nbsp;Scott Noble,&nbsp;Fabio Pacucci,&nbsp;Francesca Panessa,&nbsp;Vasileios Paschalidis,&nbsp;Hugo Pfister,&nbsp;Delphine Porquet,&nbsp;John Quenby,&nbsp;Angelo Ricarte,&nbsp;Friedrich K. Röpke,&nbsp;John Regan,&nbsp;Stephan Rosswog,&nbsp;Ashley Ruiter,&nbsp;Milton Ruiz,&nbsp;Jessie Runnoe,&nbsp;Raffaella Schneider,&nbsp;Jeremy Schnittman,&nbsp;Amy Secunda,&nbsp;Alberto Sesana,&nbsp;Naoki Seto,&nbsp;Lijing Shao,&nbsp;Stuart Shapiro,&nbsp;Carlos Sopuerta,&nbsp;Nicholas C. Stone,&nbsp;Arthur Suvorov,&nbsp;Nicola Tamanini,&nbsp;Tomas Tamfal,&nbsp;Thomas Tauris,&nbsp;Karel Temmink,&nbsp;John Tomsick,&nbsp;Silvia Toonen,&nbsp;Alejandro Torres-Orjuela,&nbsp;Martina Toscani,&nbsp;Antonios Tsokaros,&nbsp;Caner Unal,&nbsp;Verónica Vázquez-Aceves,&nbsp;Rosa Valiante,&nbsp;Maurice van Putten,&nbsp;Jan van Roestel,&nbsp;Christian Vignali,&nbsp;Marta Volonteri,&nbsp;Kinwah Wu,&nbsp;Ziri Younsi,&nbsp;Shenghua Yu,&nbsp;Silvia Zane,&nbsp;Lorenz Zwick,&nbsp;Fabio Antonini,&nbsp;Vishal Baibhav,&nbsp;Enrico Barausse,&nbsp;Alexander Bonilla Rivera,&nbsp;Marica Branchesi,&nbsp;Graziella Branduardi-Raymont,&nbsp;Kevin Burdge,&nbsp;Srija Chakraborty,&nbsp;Jorge Cuadra,&nbsp;Kristen Dage,&nbsp;Benjamin Davis,&nbsp;Selma E. de Mink,&nbsp;Roberto Decarli,&nbsp;Daniela Doneva,&nbsp;Stephanie Escoffier,&nbsp;Poshak Gandhi,&nbsp;Francesco Haardt,&nbsp;Carlos O. Lousto,&nbsp;Samaya Nissanke,&nbsp;Jason Nordhaus,&nbsp;Richard O’Shaughnessy,&nbsp;Simon Portegies Zwart,&nbsp;Adam Pound,&nbsp;Fabian Schussler,&nbsp;Olga Sergijenko,&nbsp;Alessandro Spallicci,&nbsp;Daniele Vernieri,&nbsp;Alejandro Vigna-Gómez","doi":"10.1007/s41114-022-00041-y","DOIUrl":"10.1007/s41114-022-00041-y","url":null,"abstract":"<div><p>The Laser Interferometer Space Antenna (LISA) will be a transformative experiment for gravitational wave astronomy, and, as such, it will offer unique opportunities to address many key astrophysical questions in a completely novel way. The synergy with ground-based and space-born instruments in the electromagnetic domain, by enabling multi-messenger observations, will add further to the discovery potential of LISA. The next decade is crucial to prepare the astrophysical community for LISA’s first observations. This review outlines the extensive landscape of astrophysical theory, numerical simulations, and astronomical observations that are instrumental for modeling and interpreting the upcoming LISA datastream. To this aim, the current knowledge in three main source classes for LISA is reviewed; ultra-compact stellar-mass binaries, massive black hole binaries, and extreme or interme-diate mass ratio inspirals. The relevant astrophysical processes and the established modeling techniques are summarized. Likewise, open issues and gaps in our understanding of these sources are highlighted, along with an indication of how LISA could help making progress in the different areas. New research avenues that LISA itself, or its joint exploitation with upcoming studies in the electromagnetic domain, will enable, are also illustrated. Improvements in modeling and analysis approaches, such as the combination of numerical simulations and modern data science techniques, are discussed. This review is intended to be a starting point for using LISA as a new discovery tool for understanding our Universe.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"26 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-022-00041-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4582461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 89
Dynamical boson stars 动态玻色子星
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2023-02-24 DOI: 10.1007/s41114-023-00043-4
Steven L. Liebling, Carlos Palenzuela

The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called geons, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name boson stars. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.

稳定的局域能量束作为粒子模型具有很强的吸引力。在20世纪50年代,约翰·惠勒(John Wheeler)将这种束设想为电磁能量的光滑构型,他称之为“geons”,但没有发现。相反,在20世纪60年代末,人们发现了类粒子的解,并添加了一个标量场,这些解被命名为玻色子星。从那时起,玻色子恒星在各种各样的模型中被广泛使用,作为暗物质的来源,作为黑洞模仿者,在二元系统的简单模型中,以及作为在只有一个杀戮向量的更高维度中寻找黑洞的工具。我们讨论玻色子星的重要种类,它们的动态特性,以及它们的一些用途,集中讨论最近的研究成果。
{"title":"Dynamical boson stars","authors":"Steven L. Liebling,&nbsp;Carlos Palenzuela","doi":"10.1007/s41114-023-00043-4","DOIUrl":"10.1007/s41114-023-00043-4","url":null,"abstract":"<div><p>The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s, John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called <i>geons</i>, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name <i>boson stars</i>. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single Killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"26 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-023-00043-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4929595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 156
Correction to: Gravitational wave detection by interferometry (ground and space) 更正为用干涉测量法探测引力波(地面和空间)
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-07-29 DOI: 10.1007/s41114-022-00039-6
Sheila Rowan, Jim Hough
{"title":"Correction to: Gravitational wave detection by interferometry (ground and space)","authors":"Sheila Rowan,&nbsp;Jim Hough","doi":"10.1007/s41114-022-00039-6","DOIUrl":"10.1007/s41114-022-00039-6","url":null,"abstract":"","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"25 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-022-00039-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78723492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New horizons for fundamental physics with LISA 利用 LISA 开辟基础物理学的新天地
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-06-30 DOI: 10.1007/s41114-022-00036-9
K. G. Arun, Enis Belgacem, Robert Benkel, Laura Bernard, Emanuele Berti, Gianfranco Bertone, Marc Besancon, Diego Blas, Christian G. Böhmer, Richard Brito, Gianluca Calcagni, Alejandro Cardenas-Avendaño, Katy Clough, Marco Crisostomi, Valerio De Luca, Daniela Doneva, Stephanie Escoffier, José María Ezquiaga, Pedro G. Ferreira, Pierre Fleury, Stefano Foffa, Gabriele Franciolini, Noemi Frusciante, Juan García-Bellido, Carlos Herdeiro, Thomas Hertog, Tanja Hinderer, Philippe Jetzer, Lucas Lombriser, Elisa Maggio, Michele Maggiore, Michele Mancarella, Andrea Maselli, Sourabh Nampalliwar, David Nichols, Maria Okounkova, Paolo Pani, Vasileios Paschalidis, Alvise Raccanelli, Lisa Randall, Sébastien Renaux-Petel, Antonio Riotto, Milton Ruiz, Alexander Saffer, Mairi Sakellariadou, Ippocratis D. Saltas, B. S. Sathyaprakash, Lijing Shao, Carlos F. Sopuerta, Thomas P. Sotiriou, Nikolaos Stergioulas, Nicola Tamanini, Filippo Vernizzi, Helvi Witek, Kinwah Wu, Kent Yagi, Stoytcho Yazadjiev, Nicolás Yunes, Miguel Zilhão, Niayesh Afshordi, Marie-Christine Angonin, Vishal Baibhav, Enrico Barausse, Tiago Barreiro, Nicola Bartolo, Nicola Bellomo, Ido Ben-Dayan, Eric A. Bergshoeff, Sebastiano Bernuzzi, Daniele Bertacca, Swetha Bhagwat, Béatrice Bonga, Lior M. Burko, Geoffrey Compére, Giulia Cusin, Antonio da Silva, Saurya Das, Claudia de Rham, Kyriakos Destounis, Ema Dimastrogiovanni, Francisco Duque, Richard Easther, Hontas Farmer, Matteo Fasiello, Stanislav Fisenko, Kwinten Fransen, Jörg Frauendiener, Jonathan Gair, László Árpád Gergely, Davide Gerosa, Leonardo Gualtieri, Wen-Biao Han, Aurelien Hees, Thomas Helfer, Jörg Hennig, Alexander C. Jenkins, Eric Kajfasz, Nemanja Kaloper, Vladimír Karas, Bradley J. Kavanagh, Sergei A. Klioner, Savvas M. Koushiappas, Macarena Lagos, Christophe Le Poncin-Lafitte, Francisco S. N. Lobo, Charalampos Markakis, Prado Martín-Moruno, C. J. A. P. Martins, Sabino Matarrese, Daniel R. Mayerson, José P. Mimoso, Johannes Noller, Nelson J. Nunes, Roberto Oliveri, Giorgio Orlando, George Pappas, Igor Pikovski, Luigi Pilo, Jiří Podolský, Geraint Pratten, Tomislav Prokopec, Hong Qi, Saeed Rastgoo, Angelo Ricciardone, Rocco Rollo, Diego Rubiera-Garcia, Olga Sergijenko, Stuart Shapiro, Deirdre Shoemaker, Alessandro Spallicci, Oleksandr Stashko, Leo C. Stein, Gianmassimo Tasinato, Andrew J. Tolley, Elias C. Vagenas, Stefan Vandoren, Daniele Vernieri, Rodrigo Vicente, Toby Wiseman, Valery I. Zhdanov, Miguel Zumalacárregui

The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.

激光干涉仪空间天线(LISA)有可能揭示在引力相互作用既强又动态的极端引力机制下自然界基本理论的奥妙。在本白皮书中,LISA 协会的基础物理学工作组总结了目前基础物理学中的一些课题,LISA 对引力波的观测有望为这些课题提供关键的投入。我们提供了最简要的回顾,然后划分了未来研究方向的途径,并讨论了本工作组、其他工作组和联盟工作包团队之间的联系。要使 LISA 在这些领域发挥其科学潜力,就必须发展这些联系。
{"title":"New horizons for fundamental physics with LISA","authors":"K. G. Arun,&nbsp;Enis Belgacem,&nbsp;Robert Benkel,&nbsp;Laura Bernard,&nbsp;Emanuele Berti,&nbsp;Gianfranco Bertone,&nbsp;Marc Besancon,&nbsp;Diego Blas,&nbsp;Christian G. Böhmer,&nbsp;Richard Brito,&nbsp;Gianluca Calcagni,&nbsp;Alejandro Cardenas-Avendaño,&nbsp;Katy Clough,&nbsp;Marco Crisostomi,&nbsp;Valerio De Luca,&nbsp;Daniela Doneva,&nbsp;Stephanie Escoffier,&nbsp;José María Ezquiaga,&nbsp;Pedro G. Ferreira,&nbsp;Pierre Fleury,&nbsp;Stefano Foffa,&nbsp;Gabriele Franciolini,&nbsp;Noemi Frusciante,&nbsp;Juan García-Bellido,&nbsp;Carlos Herdeiro,&nbsp;Thomas Hertog,&nbsp;Tanja Hinderer,&nbsp;Philippe Jetzer,&nbsp;Lucas Lombriser,&nbsp;Elisa Maggio,&nbsp;Michele Maggiore,&nbsp;Michele Mancarella,&nbsp;Andrea Maselli,&nbsp;Sourabh Nampalliwar,&nbsp;David Nichols,&nbsp;Maria Okounkova,&nbsp;Paolo Pani,&nbsp;Vasileios Paschalidis,&nbsp;Alvise Raccanelli,&nbsp;Lisa Randall,&nbsp;Sébastien Renaux-Petel,&nbsp;Antonio Riotto,&nbsp;Milton Ruiz,&nbsp;Alexander Saffer,&nbsp;Mairi Sakellariadou,&nbsp;Ippocratis D. Saltas,&nbsp;B. S. Sathyaprakash,&nbsp;Lijing Shao,&nbsp;Carlos F. Sopuerta,&nbsp;Thomas P. Sotiriou,&nbsp;Nikolaos Stergioulas,&nbsp;Nicola Tamanini,&nbsp;Filippo Vernizzi,&nbsp;Helvi Witek,&nbsp;Kinwah Wu,&nbsp;Kent Yagi,&nbsp;Stoytcho Yazadjiev,&nbsp;Nicolás Yunes,&nbsp;Miguel Zilhão,&nbsp;Niayesh Afshordi,&nbsp;Marie-Christine Angonin,&nbsp;Vishal Baibhav,&nbsp;Enrico Barausse,&nbsp;Tiago Barreiro,&nbsp;Nicola Bartolo,&nbsp;Nicola Bellomo,&nbsp;Ido Ben-Dayan,&nbsp;Eric A. Bergshoeff,&nbsp;Sebastiano Bernuzzi,&nbsp;Daniele Bertacca,&nbsp;Swetha Bhagwat,&nbsp;Béatrice Bonga,&nbsp;Lior M. Burko,&nbsp;Geoffrey Compére,&nbsp;Giulia Cusin,&nbsp;Antonio da Silva,&nbsp;Saurya Das,&nbsp;Claudia de Rham,&nbsp;Kyriakos Destounis,&nbsp;Ema Dimastrogiovanni,&nbsp;Francisco Duque,&nbsp;Richard Easther,&nbsp;Hontas Farmer,&nbsp;Matteo Fasiello,&nbsp;Stanislav Fisenko,&nbsp;Kwinten Fransen,&nbsp;Jörg Frauendiener,&nbsp;Jonathan Gair,&nbsp;László Árpád Gergely,&nbsp;Davide Gerosa,&nbsp;Leonardo Gualtieri,&nbsp;Wen-Biao Han,&nbsp;Aurelien Hees,&nbsp;Thomas Helfer,&nbsp;Jörg Hennig,&nbsp;Alexander C. Jenkins,&nbsp;Eric Kajfasz,&nbsp;Nemanja Kaloper,&nbsp;Vladimír Karas,&nbsp;Bradley J. Kavanagh,&nbsp;Sergei A. Klioner,&nbsp;Savvas M. Koushiappas,&nbsp;Macarena Lagos,&nbsp;Christophe Le Poncin-Lafitte,&nbsp;Francisco S. N. Lobo,&nbsp;Charalampos Markakis,&nbsp;Prado Martín-Moruno,&nbsp;C. J. A. P. Martins,&nbsp;Sabino Matarrese,&nbsp;Daniel R. Mayerson,&nbsp;José P. Mimoso,&nbsp;Johannes Noller,&nbsp;Nelson J. Nunes,&nbsp;Roberto Oliveri,&nbsp;Giorgio Orlando,&nbsp;George Pappas,&nbsp;Igor Pikovski,&nbsp;Luigi Pilo,&nbsp;Jiří Podolský,&nbsp;Geraint Pratten,&nbsp;Tomislav Prokopec,&nbsp;Hong Qi,&nbsp;Saeed Rastgoo,&nbsp;Angelo Ricciardone,&nbsp;Rocco Rollo,&nbsp;Diego Rubiera-Garcia,&nbsp;Olga Sergijenko,&nbsp;Stuart Shapiro,&nbsp;Deirdre Shoemaker,&nbsp;Alessandro Spallicci,&nbsp;Oleksandr Stashko,&nbsp;Leo C. Stein,&nbsp;Gianmassimo Tasinato,&nbsp;Andrew J. Tolley,&nbsp;Elias C. Vagenas,&nbsp;Stefan Vandoren,&nbsp;Daniele Vernieri,&nbsp;Rodrigo Vicente,&nbsp;Toby Wiseman,&nbsp;Valery I. Zhdanov,&nbsp;Miguel Zumalacárregui","doi":"10.1007/s41114-022-00036-9","DOIUrl":"10.1007/s41114-022-00036-9","url":null,"abstract":"<div><p>The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"25 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-022-00036-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81305681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic counterparts to massive black-hole mergers 大质量黑洞合并的电磁对应物
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-06-24 DOI: 10.1007/s41114-022-00037-8
Tamara Bogdanović, M. Coleman Miller, Laura Blecha

The next two decades are expected to open the door to the first coincident detections of electromagnetic (EM) and gravitational-wave (GW) signatures associated with massive black-hole (MBH) binaries heading for coalescence. These detections will launch a new era of multimessenger astrophysics by expanding this growing field to the low-frequency GW regime and will provide an unprecedented understanding of the evolution of MBHs and galaxies. They will also constitute fundamentally new probes of cosmology and would enable unique tests of gravity. The aim of this Living Review is to provide an introduction to this research topic by presenting a summary of key findings, physical processes and ideas pertaining to EM counterparts to MBH mergers as they are known at the time of this writing. We review current observational evidence for close MBH binaries, discuss relevant physical processes and timescales, and summarize the possible EM counterparts to GWs in the precursor, coalescence, and afterglow stages of a MBH merger. We also describe open questions and discuss future prospects in this dynamic and quick-paced research area.

未来二十年有望首次同时探测到与即将凝聚的大质量黑洞(MBH)双星相关的电磁波(EM)和引力波(GW)特征。这些探测通过将这一不断扩大的领域扩展到低频引力波机制,将开启多信使天体物理学的新纪元,并将提供对黑洞和星系演化的前所未有的理解。它们还将从根本上成为宇宙学的新探针,并能对引力进行独特的检验。本期 "生活评论 "的目的是介绍这一研究课题,概述与本文撰写时已知的 MBH 合并的电磁对应物有关的主要发现、物理过程和观点。我们回顾了目前对近距离 MBH 双星的观测证据,讨论了相关的物理过程和时间尺度,并总结了在 MBH 合并的前兆、凝聚和余辉阶段可能出现的与 GW 相对应的电磁现象。我们还描述了这一充满活力、进展迅速的研究领域的未决问题,并讨论了其未来前景。
{"title":"Electromagnetic counterparts to massive black-hole mergers","authors":"Tamara Bogdanović,&nbsp;M. Coleman Miller,&nbsp;Laura Blecha","doi":"10.1007/s41114-022-00037-8","DOIUrl":"10.1007/s41114-022-00037-8","url":null,"abstract":"<div><p>The next two decades are expected to open the door to the first coincident detections of electromagnetic (EM) and gravitational-wave (GW) signatures associated with massive black-hole (MBH) binaries heading for coalescence. These detections will launch a new era of multimessenger astrophysics by expanding this growing field to the low-frequency GW regime and will provide an unprecedented understanding of the evolution of MBHs and galaxies. They will also constitute fundamentally new probes of cosmology and would enable unique tests of gravity. The aim of this Living Review is to provide an introduction to this research topic by presenting a summary of key findings, physical processes and ideas pertaining to EM counterparts to MBH mergers as they are known at the time of this writing. We review current observational evidence for close MBH binaries, discuss relevant physical processes and timescales, and summarize the possible EM counterparts to GWs in the precursor, coalescence, and afterglow stages of a MBH merger. We also describe open questions and discuss future prospects in this dynamic and quick-paced research area.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"25 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9232481/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10433206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced order and surrogate models for gravitational waves 引力波的降阶模型和代用模型
IF 26.3 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-04-26 DOI: 10.1007/s41114-022-00035-w
Manuel Tiglio, Aarón Villanueva

We present an introduction to some of the state of the art in reduced order and surrogate modeling in gravitational-wave (GW) science. Approaches that we cover include principal component analysis, proper orthogonal (singular value) decompositions, the reduced basis approach, the empirical interpolation method, reduced order quadratures, and compressed likelihood evaluations. We divide the review into three parts: representation/compression of known data, predictive models, and data analysis. The targeted audience is practitioners in GW science, a field in which building predictive models and data analysis tools that are both accurate and fast to evaluate, especially when dealing with large amounts of data and intensive computations, are necessary yet can be challenging. As such, practical presentations and, sometimes, heuristic approaches are here preferred over rigor when the latter is not available. This review aims to be self-contained, within reasonable page limits, with little previous knowledge (at the undergraduate level) requirements in mathematics, scientific computing, and related disciplines. Emphasis is placed on optimality, as well as the curse of dimensionality and approaches that might have the promise of beating it. We also review most of the state of the art of GW surrogates. Some numerical algorithms, conditioning details, scalability, parallelization and other practical points are discussed. The approaches presented are to a large extent non-intrusive (in the sense that no differential equations are invoked) and data-driven and can therefore be applicable to other disciplines. We close with open challenges in high dimension surrogates, which are not unique to GW science.

我们将介绍引力波(GW)科学中减阶和替代建模的一些最新技术。我们介绍的方法包括主成分分析、适当的正交(奇异值)分解、还原基方法、经验插值法、还原阶四元数和压缩似然评估。我们将综述分为三个部分:已知数据的表示/压缩、预测模型和数据分析。目标受众是全球水文科学领域的从业人员,在这一领域中,建立既准确又能快速评估的预测模型和数据分析工具是必要的,尤其是在处理大量数据和密集计算时,但这也是一项挑战。因此,在缺乏严谨性的情况下,人们更倾向于采用实用的介绍,有时甚至是启发式方法。本综述旨在自成体系,在合理的页数限制内,对数学、科学计算及相关学科的知识(本科水平)要求不高。重点是最优性、维度诅咒以及有可能战胜它的方法。我们还回顾了 GW 代理的大部分技术现状。我们还讨论了一些数值算法、调节细节、可扩展性、并行化和其他实际问题。所介绍的方法在很大程度上是非侵入式的(即不调用微分方程)和数据驱动的,因此可适用于其他学科。最后,我们提出了高维度代用的挑战,这些挑战并非地球物理学所独有。
{"title":"Reduced order and surrogate models for gravitational waves","authors":"Manuel Tiglio,&nbsp;Aarón Villanueva","doi":"10.1007/s41114-022-00035-w","DOIUrl":"10.1007/s41114-022-00035-w","url":null,"abstract":"<div><p>We present an introduction to some of the state of the art in reduced order and surrogate modeling in gravitational-wave (GW) science. Approaches that we cover include principal component analysis, proper orthogonal (singular value) decompositions, the reduced basis approach, the empirical interpolation method, reduced order quadratures, and compressed likelihood evaluations. We divide the review into three parts: representation/compression of known data, predictive models, and data analysis. The targeted audience is practitioners in GW science, a field in which building predictive models and data analysis tools that are both accurate and fast to evaluate, especially when dealing with large amounts of data and intensive computations, are necessary yet can be challenging. As such, practical presentations and, sometimes, heuristic approaches are here preferred over rigor when the latter is not available. This review aims to be self-contained, within reasonable page limits, with little previous knowledge (at the undergraduate level) requirements in mathematics, scientific computing, and related disciplines. Emphasis is placed on optimality, as well as the curse of dimensionality and approaches that might have the promise of beating it. We also review most of the state of the art of GW surrogates. Some numerical algorithms, conditioning details, scalability, parallelization and other practical points are discussed. The approaches presented are to a large extent non-intrusive (in the sense that no differential equations are invoked) and data-driven and can therefore be applicable to other disciplines. We close with open challenges in high dimension surrogates, which are not unique to GW science.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"25 1","pages":""},"PeriodicalIF":26.3,"publicationDate":"2022-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-022-00035-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77995215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rates of compact object coalescences 致密物体凝聚的速率
IF 40.6 2区 物理与天体物理 Q1 PHYSICS, PARTICLES & FIELDS Pub Date : 2022-02-17 DOI: 10.1007/s41114-021-00034-3
Ilya Mandel, Floor S. Broekgaarden

Gravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects—neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compact objects merging through a variety of evolutionary channels produce a range of theoretically predicted rates. Rapid improvements in instrument sensitivity, along with plans for new and improved surveys, make this an opportune time to summarise the existing observational and theoretical knowledge of compact-binary coalescence rates.

引力波探测可以测量由两个致密天体——中子星和/或黑洞——组成的双星合并的速率。包含中子星的双星的合并速率进一步受到电磁观测的限制,包括银河射电双星脉冲星和短伽马射线暴。与此同时,越来越复杂的紧凑物体通过各种进化渠道合并的模型产生了一系列理论上预测的速率。仪器灵敏度的快速提高,以及新的和改进的调查计划,使现在成为总结致密双星合并率的现有观测和理论知识的合适时机。
{"title":"Rates of compact object coalescences","authors":"Ilya Mandel,&nbsp;Floor S. Broekgaarden","doi":"10.1007/s41114-021-00034-3","DOIUrl":"10.1007/s41114-021-00034-3","url":null,"abstract":"<div><p>Gravitational-wave detections are enabling measurements of the rate of coalescences of binaries composed of two compact objects—neutron stars and/or black holes. The coalescence rate of binaries containing neutron stars is further constrained by electromagnetic observations, including Galactic radio binary pulsars and short gamma-ray bursts. Meanwhile, increasingly sophisticated models of compact objects merging through a variety of evolutionary channels produce a range of theoretically predicted rates. Rapid improvements in instrument sensitivity, along with plans for new and improved surveys, make this an opportune time to summarise the existing observational and theoretical knowledge of compact-binary coalescence rates.</p></div>","PeriodicalId":686,"journal":{"name":"Living Reviews in Relativity","volume":"25 1","pages":""},"PeriodicalIF":40.6,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41114-021-00034-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4678184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 68
期刊
Living Reviews in Relativity
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1