Khaled Aboumerhi, Amparo Güemes, Hongtao Liu, Francesco Tenore, Ralph Etienne-Cummings
{"title":"Neuromorphic applications in medicine.","authors":"Khaled Aboumerhi, Amparo Güemes, Hongtao Liu, Francesco Tenore, Ralph Etienne-Cummings","doi":"10.1088/1741-2552/aceca3","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, there has been a growing demand for miniaturization, low power consumption, quick treatments, and non-invasive clinical strategies in the healthcare industry. To meet these demands, healthcare professionals are seeking new technological paradigms that can improve diagnostic accuracy while ensuring patient compliance. Neuromorphic engineering, which uses neural models in hardware and software to replicate brain-like behaviors, can help usher in a new era of medicine by delivering low power, low latency, small footprint, and high bandwidth solutions. This paper provides an overview of recent neuromorphic advancements in medicine, including medical imaging and cancer diagnosis, processing of biosignals for diagnosis, and biomedical interfaces, such as motor, cognitive, and perception prostheses. For each section, we provide examples of how brain-inspired models can successfully compete with conventional artificial intelligence algorithms, demonstrating the potential of neuromorphic engineering to meet demands and improve patient outcomes. Lastly, we discuss current struggles in fitting neuromorphic hardware with non-neuromorphic technologies and propose potential solutions for future bottlenecks in hardware compatibility.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"20 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/aceca3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, there has been a growing demand for miniaturization, low power consumption, quick treatments, and non-invasive clinical strategies in the healthcare industry. To meet these demands, healthcare professionals are seeking new technological paradigms that can improve diagnostic accuracy while ensuring patient compliance. Neuromorphic engineering, which uses neural models in hardware and software to replicate brain-like behaviors, can help usher in a new era of medicine by delivering low power, low latency, small footprint, and high bandwidth solutions. This paper provides an overview of recent neuromorphic advancements in medicine, including medical imaging and cancer diagnosis, processing of biosignals for diagnosis, and biomedical interfaces, such as motor, cognitive, and perception prostheses. For each section, we provide examples of how brain-inspired models can successfully compete with conventional artificial intelligence algorithms, demonstrating the potential of neuromorphic engineering to meet demands and improve patient outcomes. Lastly, we discuss current struggles in fitting neuromorphic hardware with non-neuromorphic technologies and propose potential solutions for future bottlenecks in hardware compatibility.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.