Eli Amson, Torsten M Scheyer, Quentin Martinez, Achim H Schwermann, Daisuke Koyabu, Kai He, Reinhard Ziegler
{"title":"Unique bone microanatomy reveals ancestry of subterranean specializations in mammals.","authors":"Eli Amson, Torsten M Scheyer, Quentin Martinez, Achim H Schwermann, Daisuke Koyabu, Kai He, Reinhard Ziegler","doi":"10.1002/evl3.303","DOIUrl":null,"url":null,"abstract":"<p><p>Acquiring a subterranean lifestyle entails a substantial shift for many aspects of terrestrial vertebrates' biology. Although this lifestyle is associated with multiple instances of convergent evolution, the relative success of some subterranean lineages largely remains unexplained. Here, we focus on the mammalian transitions to life underground, quantifying bone microanatomy through high-resolution X-ray tomography. The true moles stand out in this dataset. Examination of this family's bone histology reveals that the highly fossorial moles acquired a unique phenotype involving large amounts of compacted coarse cancellous bone. This phenotype exceeds the adaptive optimum seemingly shared by several other subterranean mammals and can be traced back to some of the first known members of the family. This remarkable microanatomy was acquired early in the history of the group and evolved faster than the gross morphology innovations of true moles' forelimb. This echoes the pattern described for other lifestyle transitions, such as the acquisition of bone mass specializations in secondarily aquatic tetrapods. Highly plastic traits-such as those pertaining to bone structure-are hence involved in the early stages of different types of lifestyle transitions.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"6 6","pages":"552-561"},"PeriodicalIF":3.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9783445/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/evl3.303","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Acquiring a subterranean lifestyle entails a substantial shift for many aspects of terrestrial vertebrates' biology. Although this lifestyle is associated with multiple instances of convergent evolution, the relative success of some subterranean lineages largely remains unexplained. Here, we focus on the mammalian transitions to life underground, quantifying bone microanatomy through high-resolution X-ray tomography. The true moles stand out in this dataset. Examination of this family's bone histology reveals that the highly fossorial moles acquired a unique phenotype involving large amounts of compacted coarse cancellous bone. This phenotype exceeds the adaptive optimum seemingly shared by several other subterranean mammals and can be traced back to some of the first known members of the family. This remarkable microanatomy was acquired early in the history of the group and evolved faster than the gross morphology innovations of true moles' forelimb. This echoes the pattern described for other lifestyle transitions, such as the acquisition of bone mass specializations in secondarily aquatic tetrapods. Highly plastic traits-such as those pertaining to bone structure-are hence involved in the early stages of different types of lifestyle transitions.
期刊介绍:
Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology.
Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.