首页 > 最新文献

Evolution Letters最新文献

英文 中文
Positive correlations in susceptibility to a diverse panel of viruses across Drosophilidae host species.
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-02-05 DOI: 10.1093/evlett/qraf002
Ryan M Imrie, Megan A Wallace, Ben Longdon

Our ability to predict the emergence of novel viruses relies on there being generalisable patterns in the susceptibilities of hosts to novel infections. Studies investigating variation in susceptibility among host species have consistently shown that closely related hosts share similar susceptibilities to a given virus. However, the extent to which such phylogenetic patterns of susceptibility are correlated amongst diverse sets of viruses is unclear. Here, we investigate phylogenetic correlations in susceptibility among Drosophilidae hosts to a panel of eleven different invertebrate viruses, comprising seven unique virus species, six unique families, and both RNA and DNA viruses. The susceptibility of hosts to each pair of viruses tested was either positively correlated across host species or did not show evidence of correlation. No negative correlations, indicative of evolutionary trade-offs in host susceptibility to different viruses, were detected between any virus pairs. The strength of correlations were generally higher in viruses of the same species and family, consistent with virus phylogenetic patterns in host infectivity. Our results suggest that generalised host susceptibility can result in positive correlations, even between highly diverged viruses, while specialised interactions with individual viruses cause a stepwise decrease in correlation strength between viruses from the within-species, to the within-family, to the across-family level.

{"title":"Positive correlations in susceptibility to a diverse panel of viruses across <i>Drosophilidae</i> host species.","authors":"Ryan M Imrie, Megan A Wallace, Ben Longdon","doi":"10.1093/evlett/qraf002","DOIUrl":"10.1093/evlett/qraf002","url":null,"abstract":"<p><p>Our ability to predict the emergence of novel viruses relies on there being generalisable patterns in the susceptibilities of hosts to novel infections. Studies investigating variation in susceptibility among host species have consistently shown that closely related hosts share similar susceptibilities to a given virus. However, the extent to which such phylogenetic patterns of susceptibility are correlated amongst diverse sets of viruses is unclear. Here, we investigate phylogenetic correlations in susceptibility among <i>Drosophilidae</i> hosts to a panel of eleven different invertebrate viruses, comprising seven unique virus species, six unique families, and both RNA and DNA viruses. The susceptibility of hosts to each pair of viruses tested was either positively correlated across host species or did not show evidence of correlation. No negative correlations, indicative of evolutionary trade-offs in host susceptibility to different viruses, were detected between any virus pairs. The strength of correlations were generally higher in viruses of the same species and family, consistent with virus phylogenetic patterns in host infectivity. Our results suggest that generalised host susceptibility can result in positive correlations, even between highly diverged viruses, while specialised interactions with individual viruses cause a stepwise decrease in correlation strength between viruses from the within-species, to the within-family, to the across-family level.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":" ","pages":"qraf002"},"PeriodicalIF":3.4,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7617412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143505180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mammalian retinal specializations for high acuity vision evolve in response to both foraging strategies and morphological constraints. 哺乳动物高敏锐度视力视网膜特化的演化是对觅食策略和形态限制的回应。
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-01-17 eCollection Date: 2025-04-01 DOI: 10.1093/evlett/qrae072
Emily E K Kopania, Nathan L Clark

Vision is a complex sensory system that requires coordination among cellular and morphological traits, and it remains unclear how functional relationships among traits interact with ecological selective pressures to shape the evolution of vision. Many species have specialized high visual acuity regions in the retina defined by patterns of ganglion cell density, which may evolve in response to ecological traits. For example, ganglion cell density can increase radially towards the center of the retina to form an area centralis, which is thought to improve acuity towards the center of the visual field in predators. Another example is the horizontal streak, where ganglion cells are dense in a horizontal pattern across the retina, which is thought to be beneficial in horizon-dominated habitats. At the morphological level, many have proposed that predation selects for high orbit convergence angles, or forward-facing eyes. We tested these hypotheses in a phylogenetic framework across eutherian mammals and found support for the association between the horizontal streak and horizon-dominated habitats. However, we did not find a significant association between orbit convergence and predation. We also tested if retinal specializations evolve in response to orbit convergence angles. We found that horizontal streaks were associated with side-facing eyes, potentially facilitating panoramic vision. Previous studies observed that some species with side-facing eyes have an area centralis shifted towards the temporal side of the retina, such that the high acuity region would project forward, but this relationship had not been tested quantitatively. We found that the temporal distance of the area centralis from the center of the retina was inversely correlated with orbit convergence, as predicted. Our work shows a strong relationship between orbit convergence and retinal specializations. We find support that both visual ecology and functional interactions among traits play important roles in the evolution of ocular traits across mammals.

视觉是一个复杂的感官系统,需要细胞和形态特征之间的协调,目前仍不清楚特征之间的功能关系如何与生态选择压力相互作用,从而形成视觉的进化。许多物种的视网膜上都有由神经节细胞密度模式定义的特化高视觉敏锐度区域,这些区域可能会随着生态特征的变化而进化。例如,神经节细胞密度可向视网膜中心径向增加,形成中央区,这被认为可提高捕食者视野中心的敏锐度。另一个例子是水平条纹,神经节细胞在整个视网膜上以水平模式密集,这被认为在地平线为主的生境中是有益的。在形态学层面上,许多人提出捕食者会选择高轨道会聚角或朝前的眼睛。我们在整个有蹄类哺乳动物的系统发育框架中检验了这些假说,发现水平条纹与地平线为主的栖息地之间的联系得到了支持。然而,我们并没有发现轨道趋同与捕食之间有明显的联系。我们还测试了视网膜特化是否会随着轨道辐辏角的变化而进化。我们发现,水平条纹与侧视眼有关,可能有利于全景视觉。以前的研究观察到,一些侧视眼物种的视网膜中央区向颞侧偏移,因此高敏锐度区域会向前凸出,但这种关系尚未得到定量检验。我们发现,中心区与视网膜中心的颞侧距离与轨道辐辏成反比,这与预测的结果一致。我们的研究表明,轨道辐辏与视网膜特化之间存在密切关系。我们发现,视觉生态学和性状之间的功能相互作用在哺乳动物眼部性状的进化过程中发挥了重要作用。
{"title":"Mammalian retinal specializations for high acuity vision evolve in response to both foraging strategies and morphological constraints.","authors":"Emily E K Kopania, Nathan L Clark","doi":"10.1093/evlett/qrae072","DOIUrl":"10.1093/evlett/qrae072","url":null,"abstract":"<p><p>Vision is a complex sensory system that requires coordination among cellular and morphological traits, and it remains unclear how functional relationships among traits interact with ecological selective pressures to shape the evolution of vision. Many species have specialized high visual acuity regions in the retina defined by patterns of ganglion cell density, which may evolve in response to ecological traits. For example, ganglion cell density can increase radially towards the center of the retina to form an area centralis, which is thought to improve acuity towards the center of the visual field in predators. Another example is the horizontal streak, where ganglion cells are dense in a horizontal pattern across the retina, which is thought to be beneficial in horizon-dominated habitats. At the morphological level, many have proposed that predation selects for high orbit convergence angles, or forward-facing eyes. We tested these hypotheses in a phylogenetic framework across eutherian mammals and found support for the association between the horizontal streak and horizon-dominated habitats. However, we did not find a significant association between orbit convergence and predation. We also tested if retinal specializations evolve in response to orbit convergence angles. We found that horizontal streaks were associated with side-facing eyes, potentially facilitating panoramic vision. Previous studies observed that some species with side-facing eyes have an area centralis shifted towards the temporal side of the retina, such that the high acuity region would project forward, but this relationship had not been tested quantitatively. We found that the temporal distance of the area centralis from the center of the retina was inversely correlated with orbit convergence, as predicted. Our work shows a strong relationship between orbit convergence and retinal specializations. We find support that both visual ecology and functional interactions among traits play important roles in the evolution of ocular traits across mammals.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"302"},"PeriodicalIF":3.4,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968189/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine-scale spatial variation in fitness, inbreeding, and inbreeding depression in a wild ungulate. 野生蹄类动物体能、近亲繁殖和近亲繁殖抑制的微尺度空间变化。
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-01-08 eCollection Date: 2025-04-01 DOI: 10.1093/evlett/qrae073
Anna M Hewett, Susan E Johnston, Gregory F Albery, Alison Morris, Sean J Morris, Josephine M Pemberton

Environmental stress can exacerbate inbreeding depression by amplifying differences between inbred and outbred individuals. In wild populations, where the environment is often unpredictable and stress can be highly detrimental, the interplay between inbreeding depression and environmental variation is potentially important. Here, we investigate variation in inbreeding level, fitness and strength of inbreeding depression across a fine-scale geographic area (~12 km2) in an individually monitored population of red deer (Cervus elaphus). We show that northern regions of the study area have lower birth weights, lower juvenile survival rates, and higher inbreeding coefficients. Such fine-scale differences in inbreeding coefficients could be caused by the mating system of red deer combined with female density variation. We then tested for an inbreeding depression-by-environment interaction (ID × E) in birth weight and juvenile survival, by fitting an interaction term between the inbreeding coefficient and geographic location. We find that inbreeding depression in juvenile survival is stronger in the harsher northern regions, indicating the presence of ID × E. We also highlight that the ability to infer ID × E is affected by the variation in inbreeding within each geographic region. Therefore, for future studies on ID × E in wild populations, we recommend first assessing whether inbreeding and traits vary spatially or temporally. Overall, this is one of only a handful of studies to find evidence for ID × E in a wild population-despite its prevalence in experimental systems-likely due to intense data demands or insufficient variation in environmental stress or inbreeding coefficients.

{"title":"Fine-scale spatial variation in fitness, inbreeding, and inbreeding depression in a wild ungulate.","authors":"Anna M Hewett, Susan E Johnston, Gregory F Albery, Alison Morris, Sean J Morris, Josephine M Pemberton","doi":"10.1093/evlett/qrae073","DOIUrl":"10.1093/evlett/qrae073","url":null,"abstract":"<p><p>Environmental stress can exacerbate inbreeding depression by amplifying differences between inbred and outbred individuals. In wild populations, where the environment is often unpredictable and stress can be highly detrimental, the interplay between inbreeding depression and environmental variation is potentially important. Here, we investigate variation in inbreeding level, fitness and strength of inbreeding depression across a fine-scale geographic area (~12 km<sup>2</sup>) in an individually monitored population of red deer (<i>Cervus elaphus</i>). We show that northern regions of the study area have lower birth weights, lower juvenile survival rates, and higher inbreeding coefficients. Such fine-scale differences in inbreeding coefficients could be caused by the mating system of red deer combined with female density variation. We then tested for an inbreeding depression-by-environment interaction (ID × E) in birth weight and juvenile survival, by fitting an interaction term between the inbreeding coefficient and geographic location. We find that inbreeding depression in juvenile survival is stronger in the harsher northern regions, indicating the presence of ID × E. We also highlight that the ability to infer ID <i>×</i> E is affected by the variation in inbreeding within each geographic region. Therefore, for future studies on ID <i>×</i> E in wild populations, we recommend first assessing whether inbreeding and traits vary spatially or temporally. Overall, this is one of only a handful of studies to find evidence for ID <i>×</i> E in a wild population-despite its prevalence in experimental systems-likely due to intense data demands or insufficient variation in environmental stress or inbreeding coefficients.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"292-301"},"PeriodicalIF":3.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968190/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reproductive output of old males is limited by seminal fluid, not sperm number.
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-01-06 eCollection Date: 2025-04-01 DOI: 10.1093/evlett/qrae071
Krish Sanghvi, Sucheta Shandilya, Alana Brown, Biliana Todorova, Martin Jahn, Samuel J L Gascoigne, Tara-Lyn Camilleri, Tommaso Pizzari, Irem Sepil

Male reproductive senescence is typically characterized by a decline in the number of sperm produced and transferred by old males, a phenomenon that may be exacerbated in polygynous species where males mate multiply. However, males also transfer seminal fluid to females, and little is known about its role in modulating male reproductive senescence. Here, we explore the contributions of sperm and seminal fluid towards male reproductive senescence in a series of sequential matings, using Drosophila melanogaster. As expected, old males produce fewer offspring than young males. However, this pattern is not driven by sperm limitation: old males have more sperm and transfer similar numbers to females, compared to young males. Instead, females storing fewer sperm of old males compared to that of young males, over a long term, drives male reproductive senescence. We are able to mitigate the age-related decline in male reproductive output by supplementing females with the seminal fluid of a young male, before she mates with an old male. Similarly, we alleviate the reduction in reproductive output across sequential matings by supplementing females with seminal fluid. Our findings highlight that seminal fluid, rather than sperm number, limits reproductive success in old or multiply mating males, highlighting its underappreciated role in reproductive aging.

{"title":"Reproductive output of old males is limited by seminal fluid, not sperm number.","authors":"Krish Sanghvi, Sucheta Shandilya, Alana Brown, Biliana Todorova, Martin Jahn, Samuel J L Gascoigne, Tara-Lyn Camilleri, Tommaso Pizzari, Irem Sepil","doi":"10.1093/evlett/qrae071","DOIUrl":"10.1093/evlett/qrae071","url":null,"abstract":"<p><p>Male reproductive senescence is typically characterized by a decline in the number of sperm produced and transferred by old males, a phenomenon that may be exacerbated in polygynous species where males mate multiply. However, males also transfer seminal fluid to females, and little is known about its role in modulating male reproductive senescence. Here, we explore the contributions of sperm and seminal fluid towards male reproductive senescence in a series of sequential matings, using <i>Drosophila melanogaster</i>. As expected, old males produce fewer offspring than young males. However, this pattern is not driven by sperm limitation: old males have more sperm and transfer similar numbers to females, compared to young males. Instead, females storing fewer sperm of old males compared to that of young males, over a long term, drives male reproductive senescence. We are able to mitigate the age-related decline in male reproductive output by supplementing females with the seminal fluid of a young male, before she mates with an old male. Similarly, we alleviate the reduction in reproductive output across sequential matings by supplementing females with seminal fluid. Our findings highlight that seminal fluid, rather than sperm number, limits reproductive success in old or multiply mating males, highlighting its underappreciated role in reproductive aging.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"282-291"},"PeriodicalIF":3.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
What does infrared thermography tell us about the evolutionary potential of heat tolerance in endotherms? 关于内温动物耐热性的进化潜力,红外热成像技术能告诉我们什么?
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2025-01-02 eCollection Date: 2025-04-01 DOI: 10.1093/evlett/qrae070
Otto Monge, Samuel P Caro, Anne Charmantier

Anthropogenic climate change affects wild animal populations through increasing average temperatures and more frequent extreme climatic events. Endotherms have evolved the capacity to regulate their body temperature but little is still known about how they can physiologically adapt to the pace of global warming. Adaptive responses would require that heat-tolerance mechanisms, such as the capacity to withstand high body temperatures and regulate evaporative water loss, exhibit sufficient heritable genetic variation for selection to act upon. Unfortunately, the quantitative genetics of these traits in endotherms remains poorly understood. In a recent study using infrared thermography (IRT) on semi-captive ostriches, Svensson et al., (Heritable variation in thermal profiles is associated with reproductive success in the world's largest bird. Evolution Letters, 8(2), 200-211.) sought to address this knowledge gap by measuring relative heat exchange from the head and neck and assessing the link between among-individual variation in heat dissipation and reproductive fitness. We discuss how IRT serves as a valuable tool for non-invasive data collecting, highlighting its potential for field studies of the evolutionary potential of thermal tolerance. Nevertheless, interpreting IRT data is not as straightforward as it may seem and thus must be conducted carefully. For instance, body parts from which surface temperatures are measured need to be unequivocally identified as sources of dry heat exchange in order to inform on thermoregulation-something lacking in the mentioned study. Furthermore, there is still no conclusive evidence that surface temperatures reflect core body temperatures in endotherms. Critical underlying mechanisms of the heat response, such as evaporative cooling, must also be considered. Assumptions stemming from uncertain proxies of thermoregulation can obscure our understanding of the endothermic adaptation of heat-tolerance traits to rapid global warming. These considerations emphasize that, while IRT can be a valuable tool for developing quantitative genetic approaches to estimate the evolutionary potential of heat tolerance in endotherms-particularly for species most vulnerable to warming, its application warrants careful planning.

{"title":"What does infrared thermography tell us about the evolutionary potential of heat tolerance in endotherms?","authors":"Otto Monge, Samuel P Caro, Anne Charmantier","doi":"10.1093/evlett/qrae070","DOIUrl":"10.1093/evlett/qrae070","url":null,"abstract":"<p><p>Anthropogenic climate change affects wild animal populations through increasing average temperatures and more frequent extreme climatic events. Endotherms have evolved the capacity to regulate their body temperature but little is still known about how they can physiologically adapt to the pace of global warming. Adaptive responses would require that heat-tolerance mechanisms, such as the capacity to withstand high body temperatures and regulate evaporative water loss, exhibit sufficient heritable genetic variation for selection to act upon. Unfortunately, the quantitative genetics of these traits in endotherms remains poorly understood. In a recent study using infrared thermography (IRT) on semi-captive ostriches, Svensson et al., (Heritable variation in thermal profiles is associated with reproductive success in the world's largest bird. Evolution Letters, 8(2), 200-211.) sought to address this knowledge gap by measuring relative heat exchange from the head and neck and assessing the link between among-individual variation in heat dissipation and reproductive fitness. We discuss how IRT serves as a valuable tool for non-invasive data collecting, highlighting its potential for field studies of the evolutionary potential of thermal tolerance. Nevertheless, interpreting IRT data is not as straightforward as it may seem and thus must be conducted carefully. For instance, body parts from which surface temperatures are measured need to be unequivocally identified as sources of dry heat exchange in order to inform on thermoregulation-something lacking in the mentioned study. Furthermore, there is still no conclusive evidence that surface temperatures reflect core body temperatures in endotherms. Critical underlying mechanisms of the heat response, such as evaporative cooling, must also be considered. Assumptions stemming from uncertain proxies of thermoregulation can obscure our understanding of the endothermic adaptation of heat-tolerance traits to rapid global warming. These considerations emphasize that, while IRT can be a valuable tool for developing quantitative genetic approaches to estimate the evolutionary potential of heat tolerance in endotherms-particularly for species most vulnerable to warming, its application warrants careful planning.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"184-188"},"PeriodicalIF":3.4,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968186/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A development-centric perspective on pace-of-life syndromes.
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2024-12-26 eCollection Date: 2025-04-01 DOI: 10.1093/evlett/qrae069
Isabel M Smallegange, Anja Guenther

Organism responses to environmental change require coordinated changes across correlated traits, so-called syndromes. For example, animals differ in their "pace-of-life syndrome" (POLS); suites of correlated life-history, behavioral and physiological traits. But standard "gene-centric" evolutionary theory cannot explain why POLSs exist because it assumes that the expression of phenotypic traits of animals is determined by genotype-specified reaction norms; it ignores that developmental processes can bias the direction of evolution so that phenotypes no longer match genotype-by-environment interactions. Here we apply a development-centric perspective to derive new POLS hypotheses that can resolve the conflict that current POLS predictions fail to explain which species/populations are resilient to environmental change.

生物对环境变化的反应需要相关性状的协调变化,即所谓的综合征。例如,动物在 "生活节奏综合征"(POLS)方面存在差异;生活史、行为和生理特征之间相互关联。但是,标准的 "以基因为中心 "的进化理论无法解释为什么会出现 POLS,因为它假定动物表型特征的表达是由基因型指定的反应规范决定的;它忽视了发育过程会偏离进化方向,使表型不再与基因型-环境相互作用相匹配。在这里,我们运用以发育为中心的视角来推导新的 POLS 假设,从而解决目前的 POLS 预测无法解释哪些物种/种群对环境变化具有适应力这一矛盾。
{"title":"A development-centric perspective on pace-of-life syndromes.","authors":"Isabel M Smallegange, Anja Guenther","doi":"10.1093/evlett/qrae069","DOIUrl":"10.1093/evlett/qrae069","url":null,"abstract":"<p><p>Organism responses to environmental change require coordinated changes across correlated traits, so-called syndromes. For example, animals differ in their \"pace-of-life syndrome\" (POLS); suites of correlated life-history, behavioral and physiological traits. But standard \"gene-centric\" evolutionary theory cannot explain why POLSs exist because it assumes that the expression of phenotypic traits of animals is determined by genotype-specified reaction norms; it ignores that developmental processes can bias the direction of evolution so that phenotypes no longer match genotype-by-environment interactions. Here we apply a development-centric perspective to derive new POLS hypotheses that can resolve the conflict that current POLS predictions fail to explain which species/populations are resilient to environmental change.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"172-183"},"PeriodicalIF":3.4,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968188/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-regulation of cooperative and private traits by PsdR in Pseudomonas aeruginosa. 铜绿假单胞菌中 PsdR 对合作性和私有性状的共同调控。
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2024-12-20 eCollection Date: 2025-04-01 DOI: 10.1093/evlett/qrae067
Huifang Qiu, Ajai A Dandekar, Weijun Dai

Social interactions profoundly shape the dynamics and functionality of microbial populations. However, mechanisms governing the regulation of cooperative or individual traits have remained elusive. Here, we investigated the regulatory mechanisms of social behaviors by characterizing the fitness of transcriptional regulator PsdR mutants in cooperating Pseudomonas aeruginosa populations. In a canonical model described previously, PsdR was shown to solely have a nonsocial role in adaptation of these populations by controlling the intracellular uptake and processing of dipeptides. In addition to these known private traits, we found that PsdR mutants also enhanced cooperation by increasing the production of quorum sensing (QS)-regulated public goods. Although private dipeptide utilization promotes individual absolute fitness, it only partially accounts for the growth advantage of PsdR mutants. The absence of the QS master regulator LasR delayed the appearance of PsdR variants in an evolution experiment. We also demonstrated that the growth fitness of PsdR mutants is determined by a combination of the QS-mediated cooperative trait and the dipeptide metabolism-related private trait. This dual trait is co-regulated by PsdR, leading to the rapid spread of PsdR variants throughout the population. In conclusion, we identified a new social model of co-regulating cooperative and private traits in PsdR variants, uncovering the social and nonsocial roles of this transcriptional regulator in cooperating bacterial populations. Our findings advance the fundamental understanding of bacterial social interactions and provide insights into population evolution, pathogen infection control and synthetic biotechnology.

{"title":"Co-regulation of cooperative and private traits by PsdR in <i>Pseudomonas aeruginosa</i>.","authors":"Huifang Qiu, Ajai A Dandekar, Weijun Dai","doi":"10.1093/evlett/qrae067","DOIUrl":"10.1093/evlett/qrae067","url":null,"abstract":"<p><p>Social interactions profoundly shape the dynamics and functionality of microbial populations. However, mechanisms governing the regulation of cooperative or individual traits have remained elusive. Here, we investigated the regulatory mechanisms of social behaviors by characterizing the fitness of transcriptional regulator PsdR mutants in cooperating <i>Pseudomonas aeruginosa</i> populations. In a canonical model described previously, PsdR was shown to solely have a nonsocial role in adaptation of these populations by controlling the intracellular uptake and processing of dipeptides. In addition to these known private traits, we found that PsdR mutants also enhanced cooperation by increasing the production of quorum sensing (QS)-regulated public goods. Although private dipeptide utilization promotes individual absolute fitness, it only partially accounts for the growth advantage of PsdR mutants. The absence of the QS master regulator LasR delayed the appearance of PsdR variants in an evolution experiment. We also demonstrated that the growth fitness of PsdR mutants is determined by a combination of the QS-mediated cooperative trait and the dipeptide metabolism-related private trait. This dual trait is co-regulated by PsdR, leading to the rapid spread of PsdR variants throughout the population. In conclusion, we identified a new social model of co-regulating cooperative and private traits in PsdR variants, uncovering the social and nonsocial roles of this transcriptional regulator in cooperating bacterial populations. Our findings advance the fundamental understanding of bacterial social interactions and provide insights into population evolution, pathogen infection control and synthetic biotechnology.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"273-281"},"PeriodicalIF":3.4,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The maintenance of genetic polymorphism underlying sexually antagonistic traits. 维持性拮抗性状的基因多态性。
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2024-12-18 eCollection Date: 2025-04-01 DOI: 10.1093/evlett/qrae059
Ewan Flintham, Vincent Savolainen, Sarah P Otto, Max Reuter, Charles Mullon

Selection often favors different trait values in males and females, leading to genetic conflicts between the sexes when traits have a shared genetic basis. Such sexual antagonism has been proposed to maintain genetic polymorphism. However, this notion is based on insights from population genetic models of single loci with fixed fitness effects. It is thus unclear how readily polymorphism emerges from sex-specific selection acting on continuous traits, where fitness effects arise from the genotype-phenotype map and the fitness landscape. Here, we model the evolution of a continuous trait that has a shared genetic basis but different optima in males and females, considering a wide variety of genetic architectures and fitness landscapes. For autosomal loci, the long-term maintenance of polymorphism requires strong conflict between males and females that generates uncharacteristic sex-specific fitness patterns. Instead, more plausible sex-specific fitness landscapes typically generate stabilizing selection leading to an evolutionarily stable state that consists of a single homozygous genotype. Except for sites tightly linked to the sex-determining region, our results indicate that genetic variation due to sexual antagonism should arise only rarely and often be transient, making these signatures challenging to detect in genomic data.

{"title":"The maintenance of genetic polymorphism underlying sexually antagonistic traits.","authors":"Ewan Flintham, Vincent Savolainen, Sarah P Otto, Max Reuter, Charles Mullon","doi":"10.1093/evlett/qrae059","DOIUrl":"10.1093/evlett/qrae059","url":null,"abstract":"<p><p>Selection often favors different trait values in males and females, leading to genetic conflicts between the sexes when traits have a shared genetic basis. Such sexual antagonism has been proposed to maintain genetic polymorphism. However, this notion is based on insights from population genetic models of single loci with fixed fitness effects. It is thus unclear how readily polymorphism emerges from sex-specific selection acting on continuous traits, where fitness effects arise from the genotype-phenotype map and the fitness landscape. Here, we model the evolution of a continuous trait that has a shared genetic basis but different optima in males and females, considering a wide variety of genetic architectures and fitness landscapes. For autosomal loci, the long-term maintenance of polymorphism requires strong conflict between males and females that generates uncharacteristic sex-specific fitness patterns. Instead, more plausible sex-specific fitness landscapes typically generate stabilizing selection leading to an evolutionarily stable state that consists of a single homozygous genotype. Except for sites tightly linked to the sex-determining region, our results indicate that genetic variation due to sexual antagonism should arise only rarely and often be transient, making these signatures challenging to detect in genomic data.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"259-272"},"PeriodicalIF":3.4,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968185/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex-specific immunocompetence: resistance and tolerance can both be futile but not under the same circumstances.
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2024-12-16 eCollection Date: 2025-04-01 DOI: 10.1093/evlett/qrae066
Franziska A Brenninger, Viktor Kovalov, Hanna Kokko

Immunocompetence evolution can involve a "resistance is futile" scenario if parasite encounter rates are so high that high investment in resistance only marginally delays infection. Here, we investigate two understudied aspects of "futility": the mode of immunocompetence and sexual selection. First, immunocompetence is usefully categorized as reducing the rate of becoming infected (resistance) or reducing the negative fitness consequences of infection once it happened (tolerance). We compare the prospects of futility for resistance, tolerance, and their joint occurrence, showing that resistance futility arises with respect to parasite encounter rates, while tolerance futility arises with respect to parasite virulence. However, if the same host trait improves pleiotropically both resistance and tolerance, futility disappears altogether and immunity investment remains profitable when increasing parasite encounter rates, virulence, or both. Second, we examine how sexual selection strength impacts these findings. If one sex (typically males) is near the faster end of a fast-slow continuum of life histories, then life history patterns reflecting futility can evolve sex-specificity. The solutions often feature sexual dimorphism in immunocompetence, but not always in the direction of strong sexual selection yielding low immunity: sexual selection can select for faster and "sicker" lives, but if sexual selection also favors traits that impact parasite encounter rates, the results are strongly dependent on whether futility (along any axis) plays a role.

{"title":"Sex-specific immunocompetence: resistance and tolerance can both be futile but not under the same circumstances.","authors":"Franziska A Brenninger, Viktor Kovalov, Hanna Kokko","doi":"10.1093/evlett/qrae066","DOIUrl":"10.1093/evlett/qrae066","url":null,"abstract":"<p><p>Immunocompetence evolution can involve a \"resistance is futile\" scenario if parasite encounter rates are so high that high investment in resistance only marginally delays infection. Here, we investigate two understudied aspects of \"futility\": the mode of immunocompetence and sexual selection. First, immunocompetence is usefully categorized as reducing the rate of becoming infected (resistance) or reducing the negative fitness consequences of infection once it happened (tolerance). We compare the prospects of futility for resistance, tolerance, and their joint occurrence, showing that resistance futility arises with respect to parasite encounter rates, while tolerance futility arises with respect to parasite virulence. However, if the same host trait improves pleiotropically both resistance and tolerance, futility disappears altogether and immunity investment remains profitable when increasing parasite encounter rates, virulence, or both. Second, we examine how sexual selection strength impacts these findings. If one sex (typically males) is near the faster end of a fast-slow continuum of life histories, then life history patterns reflecting futility can evolve sex-specificity. The solutions often feature sexual dimorphism in immunocompetence, but not always in the direction of strong sexual selection yielding low immunity: sexual selection can select for faster and \"sicker\" lives, but if sexual selection also favors traits that impact parasite encounter rates, the results are strongly dependent on whether futility (along any axis) plays a role.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 2","pages":"249-258"},"PeriodicalIF":3.4,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143796724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: A shared developmental genetic basis for sexually antagonistic male and female adaptations in the toothed water strider.
IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY Pub Date : 2024-12-12 eCollection Date: 2025-02-01 DOI: 10.1093/evlett/qrae068

[This corrects the article DOI: 10.1093/evlett/qrae056.].

[此处更正了文章 DOI:10.1093/evlett/qrae056]。
{"title":"Correction to: A shared developmental genetic basis for sexually antagonistic male and female adaptations in the toothed water strider.","authors":"","doi":"10.1093/evlett/qrae068","DOIUrl":"https://doi.org/10.1093/evlett/qrae068","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/evlett/qrae056.].</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"9 1","pages":"163"},"PeriodicalIF":3.4,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11790212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Evolution Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1