Modularity in the trilobite head consistent with the hypothesized segmental origin of the eyes

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-09-16 DOI:10.1111/ede.12418
Ernesto E. Vargas-Parra, Melanie J. Hopkins
{"title":"Modularity in the trilobite head consistent with the hypothesized segmental origin of the eyes","authors":"Ernesto E. Vargas-Parra,&nbsp;Melanie J. Hopkins","doi":"10.1111/ede.12418","DOIUrl":null,"url":null,"abstract":"<p>The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, <i>Calyptaulax annulata</i> (Phacopida) and <i>Cloacaspis senilis</i> (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for <i>C. annulata</i> shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for <i>C. senilis</i> are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/65/e8/EDE-24-.PMC9786538.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, Calyptaulax annulata (Phacopida) and Cloacaspis senilis (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for C. annulata shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for C. senilis are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三叶虫头部的模块化与假设的眼睛的节段起源一致
三叶虫的头部由多个融合的节段组成,具有多种功能。然而,三叶虫头部的潜在组织,以及模式是否在三叶虫中保守,仍然不清楚。将头部建模为由不同的模块或子单元组成,从而具有半独立进化的潜力,可以揭示组织的潜在模式。基于节肢动物比较发育生物学的模块化组织假说采用几何形态计量学进行了评估。对奥陶系两种三叶虫Calyptaulax annulata (Phacopida)和Cloacaspis senilis (Olenida sensu Adrain, 2011)颅骨的二维(半)地标数据进行了分析。利用协方差比(covariance ratio, CR)比较了假设模块内的协方差与模块之间的协方差,并利用从协方差比中得出的效应大小度量来比较不同模型的拟合。当将眼睛作为一个独立的模块时,确定的环棘猴最佳模块假设将眼睛和头部最前部区域整合为一个模块。最好的模块化假设是更复杂的,但眼睛仍然主要与头部的前部密切相关。对于这两个物种的所有其他得到充分支持的模型来说,后者也是如此。这些结果可以解释为早期节肢动物在整个发育过程中保留的最前眼段的发育信号,尽管可能存在与功能需求相关的选择压力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1