首页 > 最新文献

Evolution & Development最新文献

英文 中文
A new motile animal with implications for the evolution of axial polarity from the Ediacaran of South Australia. 南澳大利亚埃迪卡拉纪一种新的运动动物,对轴向极性的进化具有重要意义。
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-09-03 DOI: 10.1111/ede.12491
Scott D Evans, Ian V Hughes, Emily B Hughes, Peter W Dzaugis, Matthew P Dzaugis, James G Gehling, Diego C García-Bellido, Mary L Droser

Fossils of the Ediacara Biota preserve the oldest evidence for complex, macroscopic animals. Most are difficult to constrain phylogenetically, however, the presence of rare, derived groups suggests that many more fossils from this period represent extant groups than are currently appreciated. One approach to recognize such early animals is to instead focus on characteristics widespread in animals today, for example multicellularity, motility, and axial polarity. Here, we describe a new taxon, Quaestio simpsonorum gen. et sp. nov. from the Ediacaran of South Australia. Quaestio is reconstructed with a thin external membrane connecting more resilient tissues with anterior-posterior polarity, left-right asymmetry and tentative evidence for dorsoventral differentiation. Associated trace fossils indicate an epibenthic and motile lifestyle. Our results suggest that Quaestio was a motile eumetazoan with a body plan not previously recognized in the Ediacaran, including definitive evidence of chirality. This organization, combined with previous evidence for axial patterning in a variety of other Ediacara taxa, demonstrates that metazoan body plans were well established in the Precambrian.

埃迪卡拉生物群的化石保存了复杂的宏观动物的最古老证据。大多数化石都很难从系统发育的角度加以确定,然而,罕见的衍生类群的存在表明,这一时期的化石所代表的现存类群要比目前所认识到的多得多。识别这类早期动物的一种方法是关注当今动物普遍具有的特征,例如多细胞性、运动性和轴极性。在这里,我们描述了来自南澳大利亚埃迪卡拉的一个新类群--Quaestio simpsonorum gen.Quaestio有一层薄薄的外膜,连接着更具弹性的组织,具有前后极性、左右不对称和背腹分化的初步证据。相关的痕量化石显示了一种底栖和运动的生活方式。我们的研究结果表明,Quaestio 是一种运动的浮游动物,它的身体结构是以前在埃迪卡拉纪没有发现过的,其中包括手性的确凿证据。这种组织结构与之前在其他多种埃迪卡拉类群中发现的轴向模式化证据相结合,表明元古宙的身体结构在前寒武纪就已经确立。
{"title":"A new motile animal with implications for the evolution of axial polarity from the Ediacaran of South Australia.","authors":"Scott D Evans, Ian V Hughes, Emily B Hughes, Peter W Dzaugis, Matthew P Dzaugis, James G Gehling, Diego C García-Bellido, Mary L Droser","doi":"10.1111/ede.12491","DOIUrl":"https://doi.org/10.1111/ede.12491","url":null,"abstract":"<p><p>Fossils of the Ediacara Biota preserve the oldest evidence for complex, macroscopic animals. Most are difficult to constrain phylogenetically, however, the presence of rare, derived groups suggests that many more fossils from this period represent extant groups than are currently appreciated. One approach to recognize such early animals is to instead focus on characteristics widespread in animals today, for example multicellularity, motility, and axial polarity. Here, we describe a new taxon, Quaestio simpsonorum gen. et sp. nov. from the Ediacaran of South Australia. Quaestio is reconstructed with a thin external membrane connecting more resilient tissues with anterior-posterior polarity, left-right asymmetry and tentative evidence for dorsoventral differentiation. Associated trace fossils indicate an epibenthic and motile lifestyle. Our results suggest that Quaestio was a motile eumetazoan with a body plan not previously recognized in the Ediacaran, including definitive evidence of chirality. This organization, combined with previous evidence for axial patterning in a variety of other Ediacara taxa, demonstrates that metazoan body plans were well established in the Precambrian.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex ontogeny of sexual size dimorphism in a female-larger gecko: Implications of determinate growth for lizard body size and life-history evolution 雌性壁虎体型二形的复杂发育过程:确定性生长对蜥蜴体型和生活史进化的影响。
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-08-11 DOI: 10.1111/ede.12490
Brandon Meter, Lukáš Kratochvíl, Zuzana Starostová, Tomáš Kučera, Lukáš Kubička

Ectothermic vertebrates such as reptiles were assumed to be indeterminate growers, which means that there is no terminal point in time or size for growth in their lifetime. In recent years, evidence for the determinate nature of growth in lizards has accumulated, necessitating a re-examination of models of their ontogeny and evolution of sexual size dimorphism (SSD). In the female-larger gecko Paroedura vazimba, we monitored post-embryonic growth over a period of 15 months. After hatching, females grew faster than males but also reached their final body size, that is, closed growth of their vertebrae, earlier than males. The closure of bone growth in females correlates with the onset of reproductive maturation. We compared this pattern with the previously minutely studied, male-larger species Paroedura picta, where we documented determinate growth as well. We propose a model to explain the evolutionary switches in the direction of SSD in lizards based on bipotential effects of ovarian hormones on growth. In this model, male growth is assumed to require no male-specific growth modifier, such as sex-limited hormonal regulators, while growth is feminized by ovarian hormones in females. Low levels of ovarian hormones can promote bone growth, but high levels associated with maturation of the reproductive organs promote senescence of bone growth plates and thus cessation of bone growth. We suggest that models on growth, life-history and evolution of body size in many lizards should acknowledge their determinate nature of growth.

外温性脊椎动物(如爬行动物)被认为是不确定的生长者,这意味着在其一生中没有生长时间或大小的终点。近年来,越来越多的证据表明蜥蜴的生长具有确定性,因此有必要重新审视蜥蜴的本体发育和性器官大小二形性(SSD)的演化模型。我们对雌性体型较大的壁虎 Paroedura vazimba 进行了长达 15 个月的胚胎后生长监测。孵化后,雌性比雄性生长得快,但也比雄性更早达到最终体型,即脊椎骨生长闭合。雌性骨骼生长的闭合与生殖成熟的开始有关。我们将这一模式与之前研究过的体型较小的雄性物种 Paroedura picta 进行了比较,在后者身上我们也发现了确定性生长。我们基于卵巢激素对生长的双潜能效应,提出了一个解释蜥蜴SSD方向进化转换的模型。在这个模型中,假定雄性的生长不需要雄性特有的生长调节剂(如性别限制激素调节剂),而雌性的生长则受卵巢激素的影响而女性化。低水平的卵巢激素可以促进骨骼生长,但与生殖器官成熟相关的高水平卵巢激素则会促进骨骼生长板的衰老,从而停止骨骼生长。我们建议,有关许多蜥蜴的生长、生活史和体型进化的模型应承认其生长的决定性。
{"title":"Complex ontogeny of sexual size dimorphism in a female-larger gecko: Implications of determinate growth for lizard body size and life-history evolution","authors":"Brandon Meter,&nbsp;Lukáš Kratochvíl,&nbsp;Zuzana Starostová,&nbsp;Tomáš Kučera,&nbsp;Lukáš Kubička","doi":"10.1111/ede.12490","DOIUrl":"10.1111/ede.12490","url":null,"abstract":"<p>Ectothermic vertebrates such as reptiles were assumed to be indeterminate growers, which means that there is no terminal point in time or size for growth in their lifetime. In recent years, evidence for the determinate nature of growth in lizards has accumulated, necessitating a re-examination of models of their ontogeny and evolution of sexual size dimorphism (SSD). In the female-larger gecko <i>Paroedura vazimba</i>, we monitored post-embryonic growth over a period of 15 months. After hatching, females grew faster than males but also reached their final body size, that is, closed growth of their vertebrae, earlier than males. The closure of bone growth in females correlates with the onset of reproductive maturation. We compared this pattern with the previously minutely studied, male-larger species <i>Paroedura picta</i>, where we documented determinate growth as well. We propose a model to explain the evolutionary switches in the direction of SSD in lizards based on bipotential effects of ovarian hormones on growth. In this model, male growth is assumed to require no male-specific growth modifier, such as sex-limited hormonal regulators, while growth is feminized by ovarian hormones in females. Low levels of ovarian hormones can promote bone growth, but high levels associated with maturation of the reproductive organs promote senescence of bone growth plates and thus cessation of bone growth. We suggest that models on growth, life-history and evolution of body size in many lizards should acknowledge their determinate nature of growth.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12490","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Old hypotheses and theories at the heart of current evo-devo research 当前进化-胚胎研究核心的旧假说和理论。
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-06-26 DOI: 10.1111/ede.12487
Cédric Finet, Ferdinand Marlétaz
{"title":"Old hypotheses and theories at the heart of current evo-devo research","authors":"Cédric Finet,&nbsp;Ferdinand Marlétaz","doi":"10.1111/ede.12487","DOIUrl":"10.1111/ede.12487","url":null,"abstract":"","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The development of extremely large male genitalia under spatial limitation 空间限制下的超大型雄性生殖器的发育。
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-06-26 DOI: 10.1111/ede.12488
Karen Terada, Chinami Furumoto, Taira Nishimura, Akihiro Hirayama, Yasuoki Takami

Extensive research in evolutionary biology has focused on the exaggeration of sexual traits; however, the developmental basis of exaggerated sexual traits has only been determined in a few cases. The evolution of exaggerated sexual traits may involve the relaxation of constraints or developmental processes mitigating constraints. Ground beetles in the subgenus Ohomopterus (genus Carabus) have species-specific genitalia that show coevolutionary divergence between the sexes. Here, we examined the morphogenesis of the remarkably enlarged male and female genitalia of Carabus uenoi by X-ray microcomputed tomography. The morphogenetic processes generating the male and female genitalia at the pupal stage were qualitatively similar to those in closely related species with standard genital sizes. Higher growth rates contributed to the exaggeration of both the male and female genital parts of C. uenoi, possibly related to a gene network commonly upregulated in both sexes. Additionally, the length of the copulatory piece (CP), the enlarged male genital part stored in the aedeagus (AD), reached close to that of the AD at the later developmental stages and thereafter decelerated to grow in parallel with the AD, suggesting a structural constraint on the CP by the outer AD. Then, unlike related species, the lengths of the CP and AD increased at eclosion, suggesting a mechanism leading to further elongation of the male genitalia. These observations suggest that a developmental process allows continuous growth of the male genitalia even under the spatial limitation. These results revealed the spatio-temporal dynamics of the development of exaggerated genital structures under structural constraints.

进化生物学的大量研究都集中在性特征的夸大上;然而,夸大性特征的发育基础仅在少数情况下被确定。夸张性特征的进化可能涉及限制条件的放松或减轻限制条件的发育过程。地鳖亚属(Ohomopterus,Carabus属)的生殖器具有物种特异性,显示出两性之间的共同进化分化。在这里,我们通过 X 射线微计算机断层扫描研究了 Carabus uenoi 显著增大的雄性和雌性生殖器的形态发生。在蛹的阶段,雌雄生殖器的形态发生过程与具有标准生殖器大小的近缘物种的形态发生过程非常相似。较高的生长率导致了雌雄生殖器的夸大,这可能与雌雄生殖器共同上调的基因网络有关。此外,贮藏在雌雄蕊柄(Aedeagus,AD)中的扩大的雄性生殖器部分--交配片(CP)的长度在发育后期接近雌雄蕊柄的长度,随后减速,与雌雄蕊柄平行生长,这表明CP在结构上受到外层雌雄蕊柄的限制。然后,与相关物种不同的是,CP 和 AD 的长度在羽化时会增加,这表明了一种导致雄性生殖器进一步伸长的机制。这些观察结果表明,即使在空间受限的情况下,雄性生殖器的持续生长也是一个发育过程。这些结果揭示了在结构限制下夸大生殖器结构发育的时空动态。
{"title":"The development of extremely large male genitalia under spatial limitation","authors":"Karen Terada,&nbsp;Chinami Furumoto,&nbsp;Taira Nishimura,&nbsp;Akihiro Hirayama,&nbsp;Yasuoki Takami","doi":"10.1111/ede.12488","DOIUrl":"10.1111/ede.12488","url":null,"abstract":"<p>Extensive research in evolutionary biology has focused on the exaggeration of sexual traits; however, the developmental basis of exaggerated sexual traits has only been determined in a few cases. The evolution of exaggerated sexual traits may involve the relaxation of constraints or developmental processes mitigating constraints. Ground beetles in the subgenus <i>Ohomopterus</i> (genus <i>Carabus</i>) have species-specific genitalia that show coevolutionary divergence between the sexes. Here, we examined the morphogenesis of the remarkably enlarged male and female genitalia of <i>Carabus uenoi</i> by X-ray microcomputed tomography. The morphogenetic processes generating the male and female genitalia at the pupal stage were qualitatively similar to those in closely related species with standard genital sizes. Higher growth rates contributed to the exaggeration of both the male and female genital parts of <i>C. uenoi</i>, possibly related to a gene network commonly upregulated in both sexes. Additionally, the length of the copulatory piece (CP), the enlarged male genital part stored in the aedeagus (AD), reached close to that of the AD at the later developmental stages and thereafter decelerated to grow in parallel with the AD, suggesting a structural constraint on the CP by the outer AD. Then, unlike related species, the lengths of the CP and AD increased at eclosion, suggesting a mechanism leading to further elongation of the male genitalia. These observations suggest that a developmental process allows continuous growth of the male genitalia even under the spatial limitation. These results revealed the spatio-temporal dynamics of the development of exaggerated genital structures under structural constraints.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141456110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genetic determination of alternate stages in polyphenic insects 多肉昆虫交替阶段的遗传决定。
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-06-12 DOI: 10.1111/ede.12485
Deniz Erezyilmaz

Molt-based transitions in form are a central feature of insect life that have enabled adaptation to diverse and changing environments. The endocrine regulation of these transitions is well established, but an understanding of their genetic regulation has only recently emerged from insect models. The pupal and adult stages of metamorphosing insects are determined by the stage specifying transcription factors broad-complex (br) and Ecdysone inducible protein 93 (E93), respectively. A probable larval determinant, chronologically inappropriate metamorphosis (chinmo), has just recently been characterized. Expression of these three transcription factors in the metamorphosing insects is regulated by juvenile hormone with ecdysteroid hormones, and by mutual repression between the stage-specific transcription factors. This review explores the hypothesis that variations in the onset, duration, and tissue-specific expression of chinmo, br, and E93 underlie other polyphenisms that have arisen throughout insects, including the castes of social insects, aquatic stages of mayflies, and the neoteny of endoparasites. The mechanisms that constrain how chinmo, br, and E93 expression may vary will also constrain the ways that insect life history may evolve. I find that four types of expression changes are associated with novel insect forms: (1) heterochronic shift in the turnover of expression, (2) expansion or contraction of expression, (3) tissue-specific expression, and (4) redeployment of stage-specific expression. While there is more to be learned about chinmo, br, and E93 function in diverse insect taxa, the studies outlined here show that insect stages are modular units in developmental time and a substrate for evolutionary forces to act upon.

以蜕皮为基础的形态转换是昆虫生命的一个核心特征,它使昆虫能够适应多样化和不断变化的环境。这些转变的内分泌调控已得到公认,但对其遗传调控的了解最近才出现在昆虫模型中。昆虫蜕变的蛹期和成虫期分别由阶段性转录因子广谱复合物(br)和蜕皮激素诱导蛋白 93(E93)决定。一种可能的幼虫决定因子--时间上不适当的变态(chinmo)--最近刚刚被鉴定出来。这三种转录因子在变态昆虫体内的表达受幼虫激素和蜕皮激素的调控,并受阶段特异性转录因子之间的相互抑制。本综述探讨的假设是,钦模、br 和 E93 的起始、持续时间和组织特异性表达的变化是整个昆虫中出现的其他多型性的基础,包括社会性昆虫的种性、蜉蝣的水生阶段和内寄生虫的新寄生性。制约钦模、br 和 E93 表达变化的机制也将制约昆虫生活史的进化方式。我发现有四种类型的表达变化与新型昆虫形态有关:(1)表达更替的异时性转变;(2)表达的扩展或收缩;(3)组织特异性表达;以及(4)阶段特异性表达的重新部署。虽然对不同昆虫类群的颏模、喙和 E93 功能还有更多的了解,但本文概述的研究表明,昆虫阶段是发育时间的模块化单位,也是进化力量作用的基质。
{"title":"The genetic determination of alternate stages in polyphenic insects","authors":"Deniz Erezyilmaz","doi":"10.1111/ede.12485","DOIUrl":"10.1111/ede.12485","url":null,"abstract":"<p>Molt-based transitions in form are a central feature of insect life that have enabled adaptation to diverse and changing environments. The endocrine regulation of these transitions is well established, but an understanding of their genetic regulation has only recently emerged from insect models. The pupal and adult stages of metamorphosing insects are determined by the stage specifying transcription factors <i>broad-complex</i> (<i>br</i>) and <i>Ecdysone inducible protein 93</i> (<i>E93</i>), respectively. A probable larval determinant, <i>chronologically inappropriate metamorphosis</i> (<i>chinmo</i>), has just recently been characterized. Expression of these three transcription factors in the metamorphosing insects is regulated by juvenile hormone with ecdysteroid hormones, and by mutual repression between the stage-specific transcription factors. This review explores the hypothesis that variations in the onset, duration, and tissue-specific expression of <i>chinmo</i>, <i>br</i>, and <i>E93</i> underlie other polyphenisms that have arisen throughout insects, including the castes of social insects, aquatic stages of mayflies, and the neoteny of endoparasites. The mechanisms that constrain how <i>chinmo</i>, <i>br</i>, and <i>E93</i> expression may vary will also constrain the ways that insect life history may evolve. I find that four types of expression changes are associated with novel insect forms: (1) heterochronic shift in the turnover of expression, (2) expansion or contraction of expression, (3) tissue-specific expression, and (4) redeployment of stage-specific expression. While there is more to be learned about <i>chinmo</i>, <i>br</i>, and <i>E93</i> function in diverse insect taxa, the studies outlined here show that insect stages are modular units in developmental time and a substrate for evolutionary forces to act upon.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12485","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DNA methylation reprogramming in teleosts 鱼类的 DNA 甲基化重编程。
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-05-23 DOI: 10.1111/ede.12486
Sébastien Matlosz, Sigríður R. Franzdóttir, Arnar Pálsson, Zophonías O. Jónsson

Early embryonic development is crucially important but also remarkably diverse among animal taxa. Axis formation and cell lineage specification occur due to both spatial and temporal control of gene expression. This complex system involves various signaling pathways and developmental genes such as transcription factors as well as other molecular interactants that maintain cellular states, including several types of epigenetic marks. 5mC DNA methylation, the chemical modification of cytosines in eukaryotes, represents one such mark. By influencing the compaction of chromatin (a high-order DNA structure), DNA methylation can either repress or induce transcriptional activity. Mammals exhibit a reprogramming of DNA methylation from the parental genomes in the zygote following fertilization, and later in primordial germ cells (PGCs). Whether these periods of methylation reprogramming are evolutionarily conserved, or an innovation in mammals, is an emerging question. Looking into these processes in other vertebrate lineages is thus important, and teleost fish, with their extensive species richness, phenotypic diversity, and multiple rounds of whole genome duplication, provide the perfect research playground for answering such a question. This review aims to present a concise state of the art of DNA methylation reprogramming in early development in fish by summarizing findings from different research groups investigating methylation reprogramming patterns in teleosts, while keeping in mind the ramifications of the methodology used, then comparing those patterns to reprogramming patterns in mammals.

早期胚胎发育至关重要,但在动物分类群中也存在着显著的差异。轴的形成和细胞系的分化是通过基因表达的空间和时间控制实现的。这个复杂的系统涉及各种信号通路和发育基因(如转录因子),以及其他维持细胞状态的分子相互作用物,包括几种类型的表观遗传标记。5mC DNA 甲基化是真核生物中胞嘧啶的化学修饰,它就是其中一种标记。通过影响染色质(一种高阶 DNA 结构)的压实,DNA 甲基化可以抑制或诱导转录活动。哺乳动物在受精后的子代以及随后的原始生殖细胞(PGCs)中,DNA甲基化会对亲代基因组进行重编程。这些甲基化重编程时期是哺乳动物的进化保守,还是哺乳动物的创新,这是一个新出现的问题。因此,研究其他脊椎动物的这些过程非常重要,而远洋鱼类物种丰富、表型多样、全基因组多轮复制,为回答这一问题提供了完美的研究平台。本综述旨在通过总结不同研究小组对远洋鱼类甲基化重编程模式的研究结果,简要介绍DNA甲基化重编程在鱼类早期发育中的应用现状,同时考虑到所用方法的影响,然后将这些模式与哺乳动物的重编程模式进行比较。
{"title":"DNA methylation reprogramming in teleosts","authors":"Sébastien Matlosz,&nbsp;Sigríður R. Franzdóttir,&nbsp;Arnar Pálsson,&nbsp;Zophonías O. Jónsson","doi":"10.1111/ede.12486","DOIUrl":"10.1111/ede.12486","url":null,"abstract":"<p>Early embryonic development is crucially important but also remarkably diverse among animal taxa. Axis formation and cell lineage specification occur due to both spatial and temporal control of gene expression. This complex system involves various signaling pathways and developmental genes such as transcription factors as well as other molecular interactants that maintain cellular states, including several types of epigenetic marks. 5mC DNA methylation, the chemical modification of cytosines in eukaryotes, represents one such mark. By influencing the compaction of chromatin (a high-order DNA structure), DNA methylation can either repress or induce transcriptional activity. Mammals exhibit a reprogramming of DNA methylation from the parental genomes in the zygote following fertilization, and later in primordial germ cells (PGCs). Whether these periods of methylation reprogramming are evolutionarily conserved, or an innovation in mammals, is an emerging question. Looking into these processes in other vertebrate lineages is thus important, and teleost fish, with their extensive species richness, phenotypic diversity, and multiple rounds of whole genome duplication, provide the perfect research playground for answering such a question. This review aims to present a concise state of the art of DNA methylation reprogramming in early development in fish by summarizing findings from different research groups investigating methylation reprogramming patterns in teleosts, while keeping in mind the ramifications of the methodology used, then comparing those patterns to reprogramming patterns in mammals.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eye development influences horn size but not patterning in horned beetles 角甲虫的眼睛发育影响角的大小,但不影响角的形态。
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-05-10 DOI: 10.1111/ede.12479
Kat Sestrick, Armin P. Moczek

Understanding the origin of novel morphological traits is a long-standing objective in evolutionary developmental biology. We explored the developmental genetic mechanisms that underpin the formation of a textbook example of evolutionary novelties, the cephalic horns of beetles. Previous work has implicated the gene regulatory networks associated with compound eye and ocellar development in horn formation and suggested that horns and compound eyes may influence each other's sizes. Therefore, we investigated the functional significance of genes central to visual system formation in the initiation, patterning, and size determination of head horns across three horned beetle species. We find that while the downregulation of canonical eye patterning genes reliably reduces or eliminates compound eye formation, it does not alter the position or shape of head horns yet does result in an increase in relative horn length. We discuss the implications of our results for our understanding of the genesis of cephalic horns in particular and evolutionary novelties in general.

了解新颖形态特征的起源是进化发育生物学的一个长期目标。我们探索了甲虫头角这一教科书式的进化新特征形成的遗传发育机制。以前的研究表明,角的形成与复眼和眼球发育相关的基因调控网络有关,并且角和复眼的大小可能相互影响。因此,我们研究了视觉系统形成的核心基因在三个有角甲虫物种头角的形成、模式化和大小决定过程中的功能意义。我们发现,虽然下调典型的眼睛模式基因会可靠地减少或消除复眼的形成,但这并不会改变头角的位置或形状,反而会导致角的相对长度增加。我们将讨论我们的研究结果对我们理解头角的形成,特别是对一般进化新特性的影响。
{"title":"Eye development influences horn size but not patterning in horned beetles","authors":"Kat Sestrick,&nbsp;Armin P. Moczek","doi":"10.1111/ede.12479","DOIUrl":"10.1111/ede.12479","url":null,"abstract":"<p>Understanding the origin of novel morphological traits is a long-standing objective in evolutionary developmental biology. We explored the developmental genetic mechanisms that underpin the formation of a textbook example of evolutionary novelties, the cephalic horns of beetles. Previous work has implicated the gene regulatory networks associated with compound eye and ocellar development in horn formation and suggested that horns and compound eyes may influence each other's sizes. Therefore, we investigated the functional significance of genes central to visual system formation in the initiation, patterning, and size determination of head horns across three horned beetle species. We find that while the downregulation of canonical eye patterning genes reliably reduces or eliminates compound eye formation, it does not alter the position or shape of head horns yet does result in an increase in relative horn length. We discuss the implications of our results for our understanding of the genesis of cephalic horns in particular and evolutionary novelties in general.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12479","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conserved and specific gene expression patterns in the embryonic development of tardigrades 沙蜥胚胎发育过程中的保守和特异基因表达模式。
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-04-24 DOI: 10.1111/ede.12476
Chaoran Li, Zhixiang Yang, Xiaofang Xu, Lingling Meng, Shihao Liu, Dong Yang

Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species Hypsibius exemplaris. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of H. exemplaris corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with Drosophila melanogaster highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.

迟发型生物(俗称水熊)是一种神秘的生物,其特点是尽管身体结构简单紧凑,但在极端环境中却具有非凡的适应能力。迄今为止,人们对其进化和发育特征仍有很多不了解,而这些特征正是其特殊身体结构和能力的来源。本研究以水熊(Hypsibius exemplaris)为重点,初步揭示了水熊胚胎发育过程中保守和特异的基因表达模式。对不同进化年龄等级的基因进行的发育动态表达分析表明,H. exemplaris的中期保守期与神经节和中肠发育期相对应,胚胎晚期则表现出从非保守期向保守期的过渡。此外,通过与黑腹果蝇的比较,我们发现在与发育相关的通路中缺少某些通路节点,如 Maml 和 Hairless,它们分别是 NOTCH 调控基因的转录共激活因子和共抑制因子。我们还采用了加权基因共表达网络分析(WGCNA)来研究胚胎发育过程中的迟发型特异基因表达模式。我们的研究结果表明,在胚胎发育中期之前,含有最高比例的尾丝虫特异性基因(TSGs)的模块表现出较高的表达水平,可能在谷胱甘肽和脂质代谢中发挥作用。这些功能可能与蜕皮激素的合成和储藏细胞的形成有关,而蜕皮激素的合成和储藏细胞的形成是沙丁鱼特有的。
{"title":"Conserved and specific gene expression patterns in the embryonic development of tardigrades","authors":"Chaoran Li,&nbsp;Zhixiang Yang,&nbsp;Xiaofang Xu,&nbsp;Lingling Meng,&nbsp;Shihao Liu,&nbsp;Dong Yang","doi":"10.1111/ede.12476","DOIUrl":"10.1111/ede.12476","url":null,"abstract":"<p>Tardigrades, commonly known as water bears, are enigmatic organisms characterized by their remarkable resilience to extreme environments despite their simple and compact body structure. To date, there is still much to understand about their evolutionary and developmental features contributing to their special body plan and abilities. This research provides preliminary insights on the conserved and specific gene expression patterns during embryonic development of water bears, focusing on the species <i>Hypsibius exemplaris</i>. The developmental dynamic expression analysis of the genes with various evolutionary age grades indicated that the mid-conserved stage of <i>H. exemplaris</i> corresponds to the period of ganglia and midgut development, with the late embryonic stage showing a transition from non-conserved to conserved state. Additionally, a comparison with <i>Drosophila melanogaster</i> highlighted the absence of certain pathway nodes in development-related pathways, such as Maml and Hairless, which are respectively the transcriptional co-activator and co-repressor of NOTCH regulated genes. We also employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate the expression patterns of tardigrade-specific genes during embryo development. Our findings indicated that the module containing the highest proportion of tardigrade-specific genes (TSGs) exhibits high expression levels before the mid-conserved stage, potentially playing a role in glutathione and lipid metabolism. These functions may be associated to the ecdysone synthesis and storage cell formation, which is unique to tardigrades.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12476","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140662753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paired fins in vertebrate evolution and ontogeny 脊椎动物进化和个体发育过程中的配对鳍。
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-04-22 DOI: 10.1111/ede.12478
Andrey V. Bayramov, Sergey A. Yastrebov, Dmitry N. Mednikov, Karina R. Araslanova, Galina V. Ermakova, Andrey G. Zaraisky

The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates.

成对附肢的起源成为脊椎动物最重要的适应性之一,使它们能够过着活跃的生活方式,探索各种生态位。鱼类的鳍是成对附肢进化的基本形式。150 多年来,成对附肢问题一直吸引着研究人员的注意力。在此期间,主要根据形态学数据提出了许多理论,其中两个理论,即 Balfour-Thacher-Mivart 的侧折理论和 Gegenbaur 的鳃弓理论,至今仍具有现实意义。然而,迄今为止,这些观点都没有得到决定性证据的支持。研究成对附肢出现和发展的进化史是多个学科的交叉点,涉及古生物学、形态学、胚胎学和遗传学数据的综合。在这篇综述中,我们试图对这些领域积累的成果进行总结和讨论,并分析就脊椎动物成对鳍肢出现的前提条件和机制提出的理论。
{"title":"Paired fins in vertebrate evolution and ontogeny","authors":"Andrey V. Bayramov,&nbsp;Sergey A. Yastrebov,&nbsp;Dmitry N. Mednikov,&nbsp;Karina R. Araslanova,&nbsp;Galina V. Ermakova,&nbsp;Andrey G. Zaraisky","doi":"10.1111/ede.12478","DOIUrl":"10.1111/ede.12478","url":null,"abstract":"<p>The origin of paired appendages became one of the most important adaptations of vertebrates, allowing them to lead active lifestyles and explore a wide range of ecological niches. The basic form of paired appendages in evolution is the fins of fishes. The problem of paired appendages has attracted the attention of researchers for more than 150 years. During this time, a number of theories have been proposed, mainly based on morphological data, two of which, the Balfour-Thacher-Mivart lateral fold theory and Gegenbaur's gill arch theory, have not lost their relevance. So far, however, none of the proposed ideas has been supported by decisive evidence. The study of the evolutionary history of the appearance and development of paired appendages lies at the intersection of several disciplines and involves the synthesis of paleontological, morphological, embryological, and genetic data. In this review, we attempt to summarize and discuss the results accumulated in these fields and to analyze the theories put forward regarding the prerequisites and mechanisms that gave rise to paired fins and limbs in vertebrates.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140676358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Secondary-tail formation during stolonization in the Japanese green syllid, Megasyllis nipponica 日本绿萼梅在匍匐茎形成过程中的副尾形成。
IF 2.9 3区 生物学 Q1 Agricultural and Biological Sciences Pub Date : 2024-04-21 DOI: 10.1111/ede.12477
Daisuke S. Sato, Mayuko Nakamura, María Teresa Aguado, Toru Miura

Benthic annelids belonging to the family Syllidae show a distinctive sexual reproduction mode called “stolonization,” in which posterior segments are transformed into a reproductive individual-like unit called a “stolon.” Megasyllis nipponica forms a stolon head and a secondary tail in the middle of the trunk before a stolon detaches, while, in the case of posterior amputation, posterior regeneration initiates at the wound after amputation. To understand the difference between posterior regeneration and secondary-tail formation during stolonization, detailed comparisons between the developmental processes of these two tail-formation types were performed in this study. Morphological and inner structural observations (i.e., cell proliferation and muscular/nervous development) showed that some processes of posterior regeneration, such as blastema formation and muscular/nervous regeneration at the amputation site, are missing during secondary-tail formation. In contrast, the secondary tail showed some unique features, such as the formation of ventrolateral half-tail buds that later fused in the middle and muscle/nerve branches formed before the detachment of the stolon. These novel features in the process of stolonization are suggested to be adaptive since the animals need to recover a posterior end quickly to stolonize again.

茜草科底栖环带动物表现出一种独特的有性生殖模式,即 "匍匐茎化",在这种模式下,后节转变成一个类似生殖个体的单位,称为 "匍匐茎"。Megasyllis nipponica 在匍匐茎分离前,会在树干中部形成匍匐茎头和副尾,而在后截肢的情况下,后部再生会在截肢后的伤口处开始。为了了解匍匐茎形成过程中后部再生和次生尾形成的区别,本研究对这两种尾形成类型的发育过程进行了详细比较。形态学和内部结构观察(即细胞增殖和肌肉/神经发育)表明,后部再生的一些过程,如截肢部位的胚泡形成和肌肉/神经再生,在次生尾形成过程中缺失。与此相反,次生尾表现出一些独特的特征,如形成腹外侧半尾芽,随后在中间融合,以及在匍匐茎分离前形成肌肉/神经分支。匍匐茎形成过程中的这些新特征被认为是适应性的,因为动物需要快速恢复后端以再次形成匍匐茎。
{"title":"Secondary-tail formation during stolonization in the Japanese green syllid, Megasyllis nipponica","authors":"Daisuke S. Sato,&nbsp;Mayuko Nakamura,&nbsp;María Teresa Aguado,&nbsp;Toru Miura","doi":"10.1111/ede.12477","DOIUrl":"10.1111/ede.12477","url":null,"abstract":"<p>Benthic annelids belonging to the family Syllidae show a distinctive sexual reproduction mode called “stolonization,” in which posterior segments are transformed into a reproductive individual-like unit called a “stolon.” <i>Megasyllis nipponica</i> forms a stolon head and a secondary tail in the middle of the trunk before a stolon detaches, while, in the case of posterior amputation, posterior regeneration initiates at the wound after amputation. To understand the difference between posterior regeneration and secondary-tail formation during stolonization, detailed comparisons between the developmental processes of these two tail-formation types were performed in this study. Morphological and inner structural observations (i.e., cell proliferation and muscular/nervous development) showed that some processes of posterior regeneration, such as blastema formation and muscular/nervous regeneration at the amputation site, are missing during secondary-tail formation. In contrast, the secondary tail showed some unique features, such as the formation of ventrolateral half-tail buds that later fused in the middle and muscle/nerve branches formed before the detachment of the stolon. These novel features in the process of stolonization are suggested to be adaptive since the animals need to recover a posterior end quickly to stolonize again.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":null,"pages":null},"PeriodicalIF":2.9,"publicationDate":"2024-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12477","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140678789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Evolution & Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1