首页 > 最新文献

Evolution & Development最新文献

英文 中文
Plasticity as a Sign of Developmental Bias in the Evolution of Gene Regulatory Networks
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-04-18 DOI: 10.1111/ede.70007
Carlos Espinosa-Soto

Phenotypic plasticity is an organism's ability to produce a different phenotype in response to nongenetic perturbations such as environmental disturbances. Beneficial phenotypic plasticity can be important in evolution. After an environmental disturbance, it can delay extinction giving opportunity to the appearance of beneficial mutations. In addition, plasticity may also be one of the factors that define the course that evolution takes, for example, through genetic assimilation. This is a process in which a phenotype that initially appears as a plastic response becomes under genetic control. In the end, development of such a phenotype does not require the factor that originally induced it. Here, I use a model of the evolution of gene regulatory networks to study the range of conditions that allow the association between plasticity and the course of evolution. I assayed conditions like the difference between ancestral and optimum phenotypes, the difficulty to build the optimum phenotype, the complexity of the developmental system, mutation rate, strength of plasticity limitations, fitness advantage of the optima, and the similarity between the initially induced phenotype and the optimum. I found that populations that yield a beneficial phenotype through plasticity most often evolve a similar genetically determined phenotype under all the conditions that I assayed. I also identified conditions that facilitate evolution through genetic assimilation. Notwithstanding, even under less favorable circumstances, this form of evolution still confers easier access to a new genetically determined optimum.

{"title":"Plasticity as a Sign of Developmental Bias in the Evolution of Gene Regulatory Networks","authors":"Carlos Espinosa-Soto","doi":"10.1111/ede.70007","DOIUrl":"https://doi.org/10.1111/ede.70007","url":null,"abstract":"<div>\u0000 \u0000 <p>Phenotypic plasticity is an organism's ability to produce a different phenotype in response to nongenetic perturbations such as environmental disturbances. Beneficial phenotypic plasticity can be important in evolution. After an environmental disturbance, it can delay extinction giving opportunity to the appearance of beneficial mutations. In addition, plasticity may also be one of the factors that define the course that evolution takes, for example, through genetic assimilation. This is a process in which a phenotype that initially appears as a plastic response becomes under genetic control. In the end, development of such a phenotype does not require the factor that originally induced it. Here, I use a model of the evolution of gene regulatory networks to study the range of conditions that allow the association between plasticity and the course of evolution. I assayed conditions like the difference between ancestral and optimum phenotypes, the difficulty to build the optimum phenotype, the complexity of the developmental system, mutation rate, strength of plasticity limitations, fitness advantage of the optima, and the similarity between the initially induced phenotype and the optimum. I found that populations that yield a beneficial phenotype through plasticity most often evolve a similar genetically determined phenotype under all the conditions that I assayed. I also identified conditions that facilitate evolution through genetic assimilation. Notwithstanding, even under less favorable circumstances, this form of evolution still confers easier access to a new genetically determined optimum.</p></div>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143845974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does Covariation Between Cranial and Pelvic Shapes Alleviate the Obstetric Dilemma? Insights From a Brazilian Sample
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-04-01 DOI: 10.1111/ede.70005
Maria Rita Guedes Carvalho, Mercedes Okumura

Cranial and pelvic bones could have evolved in response to each other during human evolutionary history due to the increasingly tight fit between the baby's head and the mother's pelvis during delivery. A recently identified covariation pattern between these sets of bones and stature has shown important evidence of such an evolutionary trade-off, alleviating the chances of obstructed labor. Here, we tested the validity of this covariation pattern in a different sample, from a population with known high rates of C-section. 98 computed tomographies were used to perform statistical covariation tests (two-block partial least squares and ANOVA Procrustes) between pelvic and cranial shape, as well as other anthropometric variables, like stature, body mass, and BMI. Additionally, measurements were taken from cranial and pelvic bones for classic morphometric analyses. The results have shown an important sexual dimorphism in pelvic bones' shape but no correlation between them and stature or cranial size or shape. In terms of size, the sexual dimorphism on the true pelvis was also noticeable. The fact that the results obtained from this sample do not corroborate previous findings suggests the absence of this pattern in some populations. It also suggests that the current ideal rates of C-sections proposed by the World Health Organization might not be considering the existing diversity among human populations that may account for variable levels of difficulties in birth.

{"title":"Does Covariation Between Cranial and Pelvic Shapes Alleviate the Obstetric Dilemma? Insights From a Brazilian Sample","authors":"Maria Rita Guedes Carvalho,&nbsp;Mercedes Okumura","doi":"10.1111/ede.70005","DOIUrl":"https://doi.org/10.1111/ede.70005","url":null,"abstract":"<div>\u0000 \u0000 <p>Cranial and pelvic bones could have evolved in response to each other during human evolutionary history due to the increasingly tight fit between the baby's head and the mother's pelvis during delivery. A recently identified covariation pattern between these sets of bones and stature has shown important evidence of such an evolutionary trade-off, alleviating the chances of obstructed labor. Here, we tested the validity of this covariation pattern in a different sample, from a population with known high rates of C-section. 98 computed tomographies were used to perform statistical covariation tests (two-block partial least squares and ANOVA Procrustes) between pelvic and cranial shape, as well as other anthropometric variables, like stature, body mass, and BMI. Additionally, measurements were taken from cranial and pelvic bones for classic morphometric analyses. The results have shown an important sexual dimorphism in pelvic bones' shape but no correlation between them and stature or cranial size or shape. In terms of size, the sexual dimorphism on the true pelvis was also noticeable. The fact that the results obtained from this sample do not corroborate previous findings suggests the absence of this pattern in some populations. It also suggests that the current ideal rates of C-sections proposed by the World Health Organization might not be considering the existing diversity among human populations that may account for variable levels of difficulties in birth.</p></div>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143749422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ontogenetic Mechanisms of Differentiation in Two Salvia Species With Different Pollinators
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-03-28 DOI: 10.1111/ede.70006
Agustín Davies, Santiago Benitez-Vieyra

Shifts between pollinators are a major driver in the evolution and diversification of angiosperms and often involve major changes in flower morphology. These morphological differences typically originate during development, highlighting the importance of integrating ecological and developmental studies. Corolla tube length, in particular, is a key trait in specialized plant-pollinator interactions. Here, we compared flower development in two closely related Salvia species with contrasting corolla tube lengths: Salvia guaranitica, pollinated by hummingbirds, and Salvia stachydifolia, primarily pollinated by bees. We characterized developmental trajectories, floral development duration, and patterns of cell growth and proliferation. Both species shared similar allometric trajectories, differing only in their prolongation, suggesting ontogenetic scaling. However, S. guaranitica exhibited longer and faster corolla tube growth, resulting in a larger final size compared to S. stachydifolia. Corolla tube growth was linked to cell proliferation during the early stages of bud development and rapid anisotropic cell elongation in later stages. Additionally, we observed differences in anisotropic growth rates across basal, middle, and distal regions of the corolla tube. These findings suggest that shifts between pollination syndromes in Salvia species may occur without major changes to basic developmental patterns, but through ontogenetic scaling accompanied by heterochronic changes.

{"title":"Ontogenetic Mechanisms of Differentiation in Two Salvia Species With Different Pollinators","authors":"Agustín Davies,&nbsp;Santiago Benitez-Vieyra","doi":"10.1111/ede.70006","DOIUrl":"https://doi.org/10.1111/ede.70006","url":null,"abstract":"<div>\u0000 \u0000 <p>Shifts between pollinators are a major driver in the evolution and diversification of angiosperms and often involve major changes in flower morphology. These morphological differences typically originate during development, highlighting the importance of integrating ecological and developmental studies. Corolla tube length, in particular, is a key trait in specialized plant-pollinator interactions. Here, we compared flower development in two closely related <i>Salvia</i> species with contrasting corolla tube lengths: <i>Salvia guaranitica</i>, pollinated by hummingbirds, and <i>Salvia stachydifolia</i>, primarily pollinated by bees. We characterized developmental trajectories, floral development duration, and patterns of cell growth and proliferation. Both species shared similar allometric trajectories, differing only in their prolongation, suggesting ontogenetic scaling. However, <i>S. guaranitica</i> exhibited longer and faster corolla tube growth, resulting in a larger final size compared to <i>S. stachydifolia</i>. Corolla tube growth was linked to cell proliferation during the early stages of bud development and rapid anisotropic cell elongation in later stages. Additionally, we observed differences in anisotropic growth rates across basal, middle, and distal regions of the corolla tube. These findings suggest that shifts between pollination syndromes in <i>Salvia</i> species may occur without major changes to basic developmental patterns, but through ontogenetic scaling accompanied by heterochronic changes.</p></div>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143717468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Conserved Somatic Sex Determination Cascade Instructs Trait-Specific Sexual Dimorphism in Horned Dung Beetles
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-03-19 DOI: 10.1111/ede.70004
London C. Mitchell, Armin P. Moczek, Erica M. Nadolski

Sex-specific trait expression represents a striking dimension of morphological variation within and across species. The mechanisms instructing sex-specific organ development have been well studied in a small number of insect model systems, suggesting striking conservation in some parts of the somatic sex determination pathway while hinting at possible evolutionary lability in others. However, further resolution of this phenomenon necessitates additional taxon sampling, particularly in groups in which sexual dimorphisms have undergone significant elaboration and diversification. Here, we functionally investigate the somatic sex determination pathway in the gazelle dung beetle Digitonthophagus gazella, an emerging model system in the study of the development and evolution of sexual dimorphisms. We find that RNA interference (RNAi) targeting transformer (tra) caused chromosomal females to develop morphological traits largely indistinguishable from those normally only observed in males, and that traRNAi is sufficient to induce splicing of the normally male-specific isoform of doublesex in chromosomal females, while leaving males unaffected. Further, intersexRNAi was found to phenocopy previously described RNAi phenotypes of doublesex in female but not male beetles. These findings match predictions derived from models of the sex determination cascade as developed largely through studies in Drosophila melanogaster. In contrast, efforts to target transformer2 via RNAi resulted in high juvenile mortality but did not appear to affect doublesex splicing, whereas RNAi targeting Sex-lethal and two putative orthologs of hermaphrodite yielded no obvious phenotypic modifications in either males or females, raising the possibility that the function of a subset of sex determination genes may be derived in select Diptera and thus nonrepresentative of their roles in other holometabolous orders. Our results help illuminate how the differential evolutionary lability of the somatic sex determination pathway has contributed to the extraordinary morphological diversification of sex-specific trait expression found in nature.

{"title":"A Conserved Somatic Sex Determination Cascade Instructs Trait-Specific Sexual Dimorphism in Horned Dung Beetles","authors":"London C. Mitchell,&nbsp;Armin P. Moczek,&nbsp;Erica M. Nadolski","doi":"10.1111/ede.70004","DOIUrl":"10.1111/ede.70004","url":null,"abstract":"<p>Sex-specific trait expression represents a striking dimension of morphological variation within and across species. The mechanisms instructing sex-specific organ development have been well studied in a small number of insect model systems, suggesting striking conservation in some parts of the somatic sex determination pathway while hinting at possible evolutionary lability in others. However, further resolution of this phenomenon necessitates additional taxon sampling, particularly in groups in which sexual dimorphisms have undergone significant elaboration and diversification. Here, we functionally investigate the somatic sex determination pathway in the gazelle dung beetle <i>Digitonthophagus gazella</i>, an emerging model system in the study of the development and evolution of sexual dimorphisms. We find that RNA interference (RNAi) targeting <i>transformer (tra)</i> caused chromosomal females to develop morphological traits largely indistinguishable from those normally only observed in males, and that <i>tra</i><sup>RNAi</sup> is sufficient to induce splicing of the normally male-specific isoform of <i>doublesex</i> in chromosomal females, while leaving males unaffected. Further, <i>intersex</i><sup>RNAi</sup> was found to phenocopy previously described RNAi phenotypes of <i>doublesex</i> in female but not male beetles. These findings match predictions derived from models of the sex determination cascade as developed largely through studies in <i>Drosophila melanogaster</i>. In contrast, efforts to target <i>transformer2</i> via RNAi resulted in high juvenile mortality but did not appear to affect <i>doublesex</i> splicing, whereas RNAi targeting <i>Sex-lethal</i> and two putative orthologs of <i>hermaphrodite</i> yielded no obvious phenotypic modifications in either males or females, raising the possibility that the function of a subset of sex determination genes may be derived in select Diptera and thus nonrepresentative of their roles in other holometabolous orders. Our results help illuminate how the differential evolutionary lability of the somatic sex determination pathway has contributed to the extraordinary morphological diversification of sex-specific trait expression found in nature.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923317/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143662938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Mapping of Orofacial Traits Reveals a Single Genomic Region Associated With Differences in Multiple Parameters of Jaw Size Between Astyanax mexicanus Surface and Cavefish.
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-20 DOI: 10.1111/ede.70003
Amanda K Powers, Alleigh Amaismeier, Kathryn Thiel, William Anyonge, Suzanne E McGaugh, Tyler E Boggs, Clifford J Tabin, Joshua B Gross

The regulation of bone size is a poorly understood and complex developmental process. Evolutionary models can enable insight through interrogation of the developmental and molecular underpinnings of natural variation in bone size and shape. Here, we examine the Mexican tetra (Astyanax mexicanus), a species of teleost fish comprising of an extant river-dwelling surface fish and obligate cave-dwelling fish. These divergent morphs have evolved for thousands of years in drastically different habitats, which have led to diverse phenotypic differences. Among many craniofacial aberrations, cavefish harbor a wider gape, an underbite, and larger jaws compared to surface-dwelling morphs. Morphotypes are inter-fertile, allowing quantitative genetic analyses in F2 pedigrees derived from surface × cavefish crosses. Here, we used quantitative trait locus (QTL) analysis to determine the genetic basis of jaw size. Strikingly, we discovered a single genomic region associated with several jaw size metrics. Future work identifying genetic lesions that explain differences in jaw development will provide new insight to the mechanisms driving bone size differences across vertebrate taxa.

{"title":"Genetic Mapping of Orofacial Traits Reveals a Single Genomic Region Associated With Differences in Multiple Parameters of Jaw Size Between Astyanax mexicanus Surface and Cavefish.","authors":"Amanda K Powers, Alleigh Amaismeier, Kathryn Thiel, William Anyonge, Suzanne E McGaugh, Tyler E Boggs, Clifford J Tabin, Joshua B Gross","doi":"10.1111/ede.70003","DOIUrl":"https://doi.org/10.1111/ede.70003","url":null,"abstract":"<p><p>The regulation of bone size is a poorly understood and complex developmental process. Evolutionary models can enable insight through interrogation of the developmental and molecular underpinnings of natural variation in bone size and shape. Here, we examine the Mexican tetra (Astyanax mexicanus), a species of teleost fish comprising of an extant river-dwelling surface fish and obligate cave-dwelling fish. These divergent morphs have evolved for thousands of years in drastically different habitats, which have led to diverse phenotypic differences. Among many craniofacial aberrations, cavefish harbor a wider gape, an underbite, and larger jaws compared to surface-dwelling morphs. Morphotypes are inter-fertile, allowing quantitative genetic analyses in F<sub>2</sub> pedigrees derived from surface × cavefish crosses. Here, we used quantitative trait locus (QTL) analysis to determine the genetic basis of jaw size. Strikingly, we discovered a single genomic region associated with several jaw size metrics. Future work identifying genetic lesions that explain differences in jaw development will provide new insight to the mechanisms driving bone size differences across vertebrate taxa.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":" ","pages":"e70003"},"PeriodicalIF":2.6,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143457413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developmental Plasticity and the Evolutionary Rescue of a Colonizing Mite
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-18 DOI: 10.1111/ede.70002
Kathryn A. Stewart, Isabel M. Smallegange

Plasticity, especially in small newly founded populations, can expose genetic variation to selection during the evolutionary rescue of populations, allowing individuals to achieve a phenotype with which they can survive. However, developmental plasticity can also enable organisms to accommodate perturbations, generating new phenotypic variation. We explored whether, at the start of a colonization event, phenotype dynamics follow a “selective” process in which plasticity fuels evolutionary rescue or whether they are due to developmental plasticity in a “generative” process. We investigated this using the bulb mite Rhizoglyphus robini, which expresses a facultative, juvenile dispersal phenotype (deutonymph) under unfavorable conditions and shows alternative adult male phenotypes: competitive fighters or benign scramblers that are expressed to mitigate food stress and which have higher levels of genetic heterozygosity than fighters. Mimicking colonization dynamics, we founded small, medium and large populations from deutonymphs on low or high food to test if scramblers were expressed earliest postcolonization within (i) the smallest founder populations to alleviate inbreeding (selective hypothesis), or (ii) the largest founder populations as a direct consequence of food stress is highest due to higher food competition (generative hypothesis). In line with the generative hypothesis under both food environments, scramblers were expressed at the earliest in the largest founder populations, which also tended to show the lowest growth at the start of the experiment and had the lowest ultimate population size. Our findings highlight the necessity to seek explanations of how developmental pathways likely influence evolutionary rescue patterns, starting with how resource limitation (stress) shapes adaptive responses during colonization.

{"title":"Developmental Plasticity and the Evolutionary Rescue of a Colonizing Mite","authors":"Kathryn A. Stewart,&nbsp;Isabel M. Smallegange","doi":"10.1111/ede.70002","DOIUrl":"https://doi.org/10.1111/ede.70002","url":null,"abstract":"<p>Plasticity, especially in small newly founded populations, can expose genetic variation to selection during the evolutionary rescue of populations, allowing individuals to achieve a phenotype with which they can survive. However, developmental plasticity can also enable organisms to accommodate perturbations, generating new phenotypic variation. We explored whether, at the start of a colonization event, phenotype dynamics follow a “selective” process in which plasticity fuels evolutionary rescue or whether they are due to developmental plasticity in a “generative” process. We investigated this using the bulb mite <i>Rhizoglyphus robini</i>, which expresses a facultative, juvenile dispersal phenotype (deutonymph) under unfavorable conditions and shows alternative adult male phenotypes: competitive fighters or benign scramblers that are expressed to mitigate food stress and which have higher levels of genetic heterozygosity than fighters. Mimicking colonization dynamics, we founded small, medium and large populations from deutonymphs on low or high food to test if scramblers were expressed earliest postcolonization within (i) the <i>smallest</i> founder populations to alleviate inbreeding (selective hypothesis), or (ii) the <i>largest</i> founder populations as a direct consequence of food stress is highest due to higher food competition (generative hypothesis). In line with the generative hypothesis under both food environments, scramblers were expressed at the earliest in the largest founder populations, which also tended to show the lowest growth at the start of the experiment and had the lowest ultimate population size. Our findings highlight the necessity to seek explanations of how developmental pathways likely influence evolutionary rescue patterns, starting with how resource limitation (stress) shapes adaptive responses during colonization.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.70002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143431241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exceptionally Preserved Setae: A Possible Morphological Synapomorphy of Cambrian Lophotrochozoans
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2025-02-02 DOI: 10.1111/ede.70001
Yue Liang, Timothy P. Topper, Lars E. Holmer, Yazhou Hu, Fan Liu, Zhifei Zhang

Cambrian Lagerstätten yield exceptionally preserved fossils that have greatly improved our understanding of the origin and evolution of animal groups. Brachiopoda, a phylum of bivalved marine invertebrates nested firmly within the lophotrochozoan protostomes, are widely recovered in such Lagerstätten. The marginal chitinous setae (or chaetae) of brachiopods are the most commonly described soft tissue and have been interpreted as performing a defensive and/or sensory role. Despite their relatively common appearance in Cambrian Lagerstätten, the origin, function, and evolution of setae in the Brachiopoda is poorly known. Here, we document exquisitely preserved setal structures from South China and Laurentia paleocontinents giving new insights into their formation, microstructure and preservation mode. New setae typically make their appearance within the follicle of a neighbouring older seta and then branches off laterally forming its own follicle. Setal microstructure is likely to be composed of many canals, highly comparable to setae of their recent counterparts. Moreover, setae recovered from these palaeo-continents present different preservation: aside from the normal preservation of iron oxides and carbonaceous ingredients, some compositions of calcium are also detected in this originally chitinous organization. Investigating the evolutionary origins of chitinous setae, a specialized type found notably in lophotrochozoans such as brachiopods and annelids, reveals its presence in early Cambrian stem groups. This character likely serves as a morphological synapomorphy in lophotrochozoan evolution. However, the dearth of morpho-ultrastructure and comparative studies in Cambrian fossils presents a challenge in fully understanding this evolutionary development.

{"title":"Exceptionally Preserved Setae: A Possible Morphological Synapomorphy of Cambrian Lophotrochozoans","authors":"Yue Liang,&nbsp;Timothy P. Topper,&nbsp;Lars E. Holmer,&nbsp;Yazhou Hu,&nbsp;Fan Liu,&nbsp;Zhifei Zhang","doi":"10.1111/ede.70001","DOIUrl":"10.1111/ede.70001","url":null,"abstract":"<p>Cambrian Lagerstätten yield exceptionally preserved fossils that have greatly improved our understanding of the origin and evolution of animal groups. Brachiopoda, a phylum of bivalved marine invertebrates nested firmly within the lophotrochozoan protostomes, are widely recovered in such Lagerstätten. The marginal chitinous setae (or chaetae) of brachiopods are the most commonly described soft tissue and have been interpreted as performing a defensive and/or sensory role. Despite their relatively common appearance in Cambrian Lagerstätten, the origin, function, and evolution of setae in the Brachiopoda is poorly known. Here, we document exquisitely preserved setal structures from South China and Laurentia paleocontinents giving new insights into their formation, microstructure and preservation mode. New setae typically make their appearance within the follicle of a neighbouring older seta and then branches off laterally forming its own follicle. Setal microstructure is likely to be composed of many canals, highly comparable to setae of their recent counterparts. Moreover, setae recovered from these palaeo-continents present different preservation: aside from the normal preservation of iron oxides and carbonaceous ingredients, some compositions of calcium are also detected in this originally chitinous organization. Investigating the evolutionary origins of chitinous setae, a specialized type found notably in lophotrochozoans such as brachiopods and annelids, reveals its presence in early Cambrian stem groups. This character likely serves as a morphological synapomorphy in lophotrochozoan evolution. However, the dearth of morpho-ultrastructure and comparative studies in Cambrian fossils presents a challenge in fully understanding this evolutionary development.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.70001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143079086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus) 复杂和动态的基因随年龄和基因随环境的相互作用是北极鲑(Salvelinus alpinus)适应分化的功能形态变异的基础。
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-12-26 DOI: 10.1111/ede.70000
Christine L. Ouellet-Fagg, Anne A. Easton, Kevin J. Parsons, Roy G. Danzmann, Moira M. Ferguson

The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment. Thus, we induced plasticity in full-sib families of Arctic charr (Salvelinus alpinus) morphs from two Icelandic lakes by mimicking prey variation in the wild. We characterized variation in body shape and size at two ages and investigated their genetic architecture with quantitative trait locus (QTL) analysis. Age had a greater effect on body shape than diet in most families, suggesting that development strongly influences phenotypic variation available for selection. Consistent with our hypothesis, multiple QTL were detected for all traits and their location depended on age and diet. Many of the genome-wide QTL were located within a subset of duplicated chromosomal regions suggesting that ancestral whole genome duplication events have played a role in the genetic control of functional morphological variation in the species. Moreover, the detection of two body shape QTL after controlling for the effects of age provides additional evidence for genetic variation in the plastic response of morphological traits to environmental variation. Thus, functional morphological traits involved in phenotypic divergence are molded by complex genetic interactions with development and environment.

适应性表型分化的进化需要可遗传的遗传变异。然而,人们没有充分认识到性状遗传是由发育过程与环境相互作用塑造的。我们假设不同功能性状的遗传结构依赖于年龄和觅食环境。因此,我们通过模拟野生猎物的变化,诱导了来自两个冰岛湖泊的北极鲑(Salvelinus alpinus)变种的全同胞家族的可塑性。本研究利用数量性状位点(quantitative trait locus, QTL)分析了两个年龄段的体型和体型变异,并对其遗传结构进行了研究。在大多数家庭中,年龄对体型的影响大于饮食,这表明发育对可用于选择的表型变异有强烈影响。与我们的假设一致,所有性状都检测到多个QTL,它们的位置取决于年龄和饮食。许多全基因组QTL位于重复染色体区域的一个子集内,这表明祖先的全基因组重复事件在物种的功能形态变异的遗传控制中发挥了作用。此外,在控制了年龄的影响后,检测到两个体型QTL,为形态性状对环境变化的可塑性响应的遗传变异提供了额外的证据。因此,涉及表型分化的功能形态性状是由发育和环境的复杂遗传相互作用塑造的。
{"title":"Complex and Dynamic Gene-by-Age and Gene-by-Environment Interactions Underlie Functional Morphological Variation in Adaptive Divergence in Arctic Charr (Salvelinus alpinus)","authors":"Christine L. Ouellet-Fagg,&nbsp;Anne A. Easton,&nbsp;Kevin J. Parsons,&nbsp;Roy G. Danzmann,&nbsp;Moira M. Ferguson","doi":"10.1111/ede.70000","DOIUrl":"10.1111/ede.70000","url":null,"abstract":"<p>The evolution of adaptive phenotypic divergence requires heritable genetic variation. However, it is underappreciated that trait heritability is molded by developmental processes interacting with the environment. We hypothesized that the genetic architecture of divergent functional traits was dependent on age and foraging environment. Thus, we induced plasticity in full-sib families of Arctic charr (<i>Salvelinus alpinus</i>) morphs from two Icelandic lakes by mimicking prey variation in the wild. We characterized variation in body shape and size at two ages and investigated their genetic architecture with quantitative trait locus (QTL) analysis. Age had a greater effect on body shape than diet in most families, suggesting that development strongly influences phenotypic variation available for selection. Consistent with our hypothesis, multiple QTL were detected for all traits and their location depended on age and diet. Many of the genome-wide QTL were located within a subset of duplicated chromosomal regions suggesting that ancestral whole genome duplication events have played a role in the genetic control of functional morphological variation in the species. Moreover, the detection of two body shape QTL after controlling for the effects of age provides additional evidence for genetic variation in the plastic response of morphological traits to environmental variation. Thus, functional morphological traits involved in phenotypic divergence are molded by complex genetic interactions with development and environment.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670044/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142893367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embryonic Lethality, Juvenile Growth Variation, and Adult Sterility Correlate With Phylogenetic Distance of Danionin Hybrids 丹尼宁杂种的胚胎致死性、幼体生长变异和成体不育性与系统发育距离相关。
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-12-05 DOI: 10.1111/ede.12495
Ryan L. Trevena, Benton M. Veire, Trevor J. Chamberlain, Cara E. Moravec, Francisco Pelegri

Hybrid incompatibility, which plays a pivotal role in speciation, is expected to correlate with greater phylogenetic distance. Here, we investigate the fitness of interspecies hybrids within the Danionin subfamily, which includes the model species, Danio rerio, and its relatives - Danio kyathit, Danio albolineatus, Danio margaritatus, and Devario aequipinnatus. We generated hybrids through in vitro fertilization, using Danio rerio as the maternal species, with normal fertilization rates showing no incompatibilities in sperm-egg interactions within these two genera. Generally, all hybrids exhibit normal patterns and timelines in early developmental transitions, from cleavage stages to the initiation of epiboly, although inter-genera Danio-Devario hybrids subsequently exhibit fully penetrant embryonic lethality. Intra-genus Danio hybrids, on the other hand, can survive through embryogenesis and into adulthood. However, rates of survival during these stages diminish according to phylogenetic distance, with increasing early lethality in hybrids from more distantly related species. Additionally, Danio hybrids exhibit increased growth rate variability during juvenile stages. All Danio hybrids have reduced testes sizes, sperm counts, and sperm viabilities, with sperm displaying defects in flagellum formation and integrity. Adult male intra-genus hybrids are invariably sterile, except in the case of Danio rerio hybrids with the closely related Danio kyathit, which produced a backcrossed F2 generation that did not survive juvenile stages. Our studies highlight a loss of hybrid compatibility at various life stages in the Danio and Devario genera, based on deleterious effects and reduced developmental robustness, emphasizing a correlation between the severity of incompatibility outcomes and the degree of phylogenetic relatedness.

杂种不亲和性在物种形成中起着关键作用,预计与较大的系统发育距离有关。在这里,我们研究了Danionin亚科(包括模式种Danio rerio及其亲缘种Danio kyathit、Danio albolineatus、Danio margaritatus和Devario aequipinatus)的种间杂交适应度。我们通过体外受精产生了杂交种,以达尼奥韦里奥为母种,正常受精率表明这两个属在精子-卵子相互作用中没有不相容。一般来说,所有杂交种在早期发育转变中都表现出正常的模式和时间线,从卵裂阶段到卵裂开始,尽管属间的达尼-德瓦里奥杂交种随后表现出完全渗透的胚胎致死性。另一方面,属内杂交种可以通过胚胎发育存活到成年。然而,这些阶段的存活率根据系统发育距离而降低,亲缘关系越远的物种杂交的早期致死率越高。此外,杂交种在幼年期表现出更高的生长速率变异性。所有的达尼欧杂交品种的睾丸大小、精子数量和精子存活率都有所下降,而且精子在鞭毛形成和完整性方面存在缺陷。成年雄性属内杂交种总是不育的,除了Danio rerio与近亲Danio kyathit杂交的情况,后者产生的回交F2代不能在幼年期存活。我们的研究强调了Danio和Devario属在不同生命阶段的杂交亲和性丧失,基于有害影响和发育稳健性降低,强调了不亲和性结果的严重程度与系统发育亲缘关系的程度之间的相关性。
{"title":"Embryonic Lethality, Juvenile Growth Variation, and Adult Sterility Correlate With Phylogenetic Distance of Danionin Hybrids","authors":"Ryan L. Trevena,&nbsp;Benton M. Veire,&nbsp;Trevor J. Chamberlain,&nbsp;Cara E. Moravec,&nbsp;Francisco Pelegri","doi":"10.1111/ede.12495","DOIUrl":"10.1111/ede.12495","url":null,"abstract":"<p>Hybrid incompatibility, which plays a pivotal role in speciation, is expected to correlate with greater phylogenetic distance. Here, we investigate the fitness of interspecies hybrids within the Danionin subfamily, which includes the model species, <i>Danio rerio</i>, and its relatives - <i>Danio kyathit</i>, <i>Danio albolineatus</i>, <i>Danio margaritatus</i>, and <i>Devario aequipinnatus</i>. We generated hybrids through in vitro fertilization, using <i>Danio rerio</i> as the maternal species, with normal fertilization rates showing no incompatibilities in sperm-egg interactions within these two genera. Generally, all hybrids exhibit normal patterns and timelines in early developmental transitions, from cleavage stages to the initiation of epiboly, although inter-genera <i>Danio</i>-<i>Devario</i> hybrids subsequently exhibit fully penetrant embryonic lethality. Intra-genus <i>Danio</i> hybrids, on the other hand, can survive through embryogenesis and into adulthood. However, rates of survival during these stages diminish according to phylogenetic distance, with increasing early lethality in hybrids from more distantly related species. Additionally, <i>Danio</i> hybrids exhibit increased growth rate variability during juvenile stages. All <i>Danio</i> hybrids have reduced testes sizes, sperm counts, and sperm viabilities, with sperm displaying defects in flagellum formation and integrity. Adult male intra-genus hybrids are invariably sterile, except in the case of <i>Danio rerio</i> hybrids with the closely related <i>Danio kyathit</i>, which produced a backcrossed F2 generation that did not survive juvenile stages. Our studies highlight a loss of hybrid compatibility at various life stages in the <i>Danio</i> and <i>Devario</i> genera, based on deleterious effects and reduced developmental robustness, emphasizing a correlation between the severity of incompatibility outcomes and the degree of phylogenetic relatedness.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621593/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142784818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterochrony and Oophagy Underlie the Evolution of Giant Filter-Feeding Lamniform Sharks 异时性和噬卵性是巨型滤食性板状鲨鱼进化的基础
IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY Pub Date : 2024-11-30 DOI: 10.1111/ede.12496
Joel H. Gayford, Duncan J. Irschick, Andrew Chin, Jodie L. Rummer

Evolutionary transitions toward gigantic body sizes have profound consequences for the structure and dynamics of ecological networks. Among elasmobranchs (sharks and rays), gigantism has evolved on several occasions, most notably in the iconic Megalodon (Otodus megalodon†) and the extant whale shark (Rhincodon typus), basking shark (Cetorhinus maximus), and megamouth shark (Megachasma pelagios), all of which reach total lengths exceeding 6 m and, in some cases, reach 21 m or more. Comparative phylogenetic studies suggest that filter feeding and heterothermy provide two alternative evolutionary pathways leading to gigantism in sharks. These selection-based explanations for gigantism are important; however, our understanding of evolutionary transitions in body size is fundamentally constrained without a proximate, mechanistic understanding of how the suite of adaptations necessary to facilitate gigantism evolved. Here we propose the heterochrony hypothesis for the evolution of the giant filter-feeding shark ecomorphotype. We suggest that craniofacial adaptations for oophagy in embryonic stages of lamniform sharks are retained through ontogeny in C. maximus and M. pelagios by paedomorphosis, resulting in an enlarged head and mouth relative to the rest of the body, even in adulthood. This change in developmental timing enables these taxa to optimize prey acquisition, which is thought to be the limiting factor for the evolution of gigantism in filter-feeding marine vertebrates. We discuss the concordance of this hypothesis with current developmental, morphological, and evolutionary data, and we suggest future means by which the hypothesis could be tested.

向巨大体型的进化转变对生态网络的结构和动态有着深远的影响。在鲨科动物(鲨鱼和鳐鱼)中,巨人症在一些情况下已经进化出来,最明显的是标志性的巨齿鲨(Otodus Megalodon†)和现存的鲸鲨(Rhincodon typus)、姥鲨(Cetorhinus maximus)和巨嘴鲨(Megachasma pelagios),它们的总长度都超过6米,有些甚至达到21米以上。比较系统发育研究表明,滤食性和异温性提供了两种导致鲨鱼巨人症的进化途径。这些基于选择的巨人症解释很重要;然而,我们对体型进化转变的理解从根本上是有限的,没有对促进巨人症所需的一系列适应是如何进化的近似的、机械的理解。本文提出了巨型滤食性鲨鱼生态形态进化的异时假说。我们认为,板形鲨在胚胎阶段对噬卵的颅面适应,在C. maximus和M. pelagios的个体发育中,通过幼体发育得以保留,导致头部和嘴相对于身体其他部分增大,即使在成年期也是如此。这种发育时间的变化使这些分类群能够优化猎物获取,这被认为是滤食性海洋脊椎动物巨人症进化的限制因素。我们讨论了这一假设与当前的发育、形态和进化数据的一致性,并提出了未来可以检验这一假设的方法。
{"title":"Heterochrony and Oophagy Underlie the Evolution of Giant Filter-Feeding Lamniform Sharks","authors":"Joel H. Gayford,&nbsp;Duncan J. Irschick,&nbsp;Andrew Chin,&nbsp;Jodie L. Rummer","doi":"10.1111/ede.12496","DOIUrl":"https://doi.org/10.1111/ede.12496","url":null,"abstract":"<p>Evolutionary transitions toward gigantic body sizes have profound consequences for the structure and dynamics of ecological networks. Among elasmobranchs (sharks and rays), gigantism has evolved on several occasions, most notably in the iconic Megalodon (<i>Otodus megalodon</i>†) and the extant whale shark (<i>Rhincodon typus</i>), basking shark (<i>Cetorhinus maximus</i>), and megamouth shark (<i>Megachasma pelagios</i>), all of which reach total lengths exceeding 6 m and, in some cases, reach 21 m or more. Comparative phylogenetic studies suggest that filter feeding and heterothermy provide two alternative evolutionary pathways leading to gigantism in sharks. These selection-based explanations for gigantism are important; however, our understanding of evolutionary transitions in body size is fundamentally constrained without a proximate, mechanistic understanding of how the suite of adaptations necessary to facilitate gigantism evolved. Here we propose the heterochrony hypothesis for the evolution of the giant filter-feeding shark ecomorphotype. We suggest that craniofacial adaptations for oophagy in embryonic stages of lamniform sharks are retained through ontogeny in <i>C. maximus</i> and <i>M. pelagios</i> by paedomorphosis, resulting in an enlarged head and mouth relative to the rest of the body, even in adulthood. This change in developmental timing enables these taxa to optimize prey acquisition, which is thought to be the limiting factor for the evolution of gigantism in filter-feeding marine vertebrates. We discuss the concordance of this hypothesis with current developmental, morphological, and evolutionary data, and we suggest future means by which the hypothesis could be tested.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"27 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12496","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142754097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Evolution & Development
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1