Annalinda Pisano, Loredana Le Pera, Raffaella Carletti, Bruna Cerbelli, Maria G. Pignataro, Angelina Pernazza, Fabrizio Ferre, Maria Lombardi, Davide Lazzeroni, Iacopo Olivotto, Ornella E. Rimoldi, Chiara Foglieni, Paolo G. Camici, Giulia d'Amati
{"title":"RNA-seq profiling reveals different pathways between remodeled vessels and myocardium in hypertrophic cardiomyopathy","authors":"Annalinda Pisano, Loredana Le Pera, Raffaella Carletti, Bruna Cerbelli, Maria G. Pignataro, Angelina Pernazza, Fabrizio Ferre, Maria Lombardi, Davide Lazzeroni, Iacopo Olivotto, Ornella E. Rimoldi, Chiara Foglieni, Paolo G. Camici, Giulia d'Amati","doi":"10.1111/micc.12790","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Coronary microvascular dysfunction (CMD) is a key pathophysiological feature of hypertrophic cardiomyopathy (HCM), contributing to myocardial ischemia and representing a critical determinant of patients' adverse outcome. The molecular mechanisms underlying the morphological and functional changes of CMD are still unknown. Aim of this study was to obtain insights on the molecular pathways associated with microvessel remodeling in HCM.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Interventricular septum myectomies from patients with obstructive HCM (<i>n</i> = 20) and donors' hearts (CTRL, discarded for technical reasons, <i>n</i> = 7) were collected. Remodeled intramyocardial arterioles and cardiomyocytes were microdissected by laser capture and next-generation sequencing was used to delineate the transcriptome profile.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We identified 720 exclusive differentially expressed genes (DEGs) in cardiomyocytes and 1315 exclusive DEGs in remodeled arterioles of HCM. Performing gene ontology and pathway enrichment analyses, we identified selectively altered pathways between remodeled arterioles and cardiomyocytes in HCM patients and controls.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We demonstrate the existence of distinctive pathways between remodeled arterioles and cardiomyocytes in HCM patients and controls at the transcriptome level.</p>\n </section>\n </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9787970/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.12790","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Objective
Coronary microvascular dysfunction (CMD) is a key pathophysiological feature of hypertrophic cardiomyopathy (HCM), contributing to myocardial ischemia and representing a critical determinant of patients' adverse outcome. The molecular mechanisms underlying the morphological and functional changes of CMD are still unknown. Aim of this study was to obtain insights on the molecular pathways associated with microvessel remodeling in HCM.
Methods
Interventricular septum myectomies from patients with obstructive HCM (n = 20) and donors' hearts (CTRL, discarded for technical reasons, n = 7) were collected. Remodeled intramyocardial arterioles and cardiomyocytes were microdissected by laser capture and next-generation sequencing was used to delineate the transcriptome profile.
Results
We identified 720 exclusive differentially expressed genes (DEGs) in cardiomyocytes and 1315 exclusive DEGs in remodeled arterioles of HCM. Performing gene ontology and pathway enrichment analyses, we identified selectively altered pathways between remodeled arterioles and cardiomyocytes in HCM patients and controls.
Conclusions
We demonstrate the existence of distinctive pathways between remodeled arterioles and cardiomyocytes in HCM patients and controls at the transcriptome level.
期刊介绍:
The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation.
Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.