Regulation of BzATP-Induced Blood–Brain Barrier Endothelial Cell Hyperpermeability by NLRP3 Inflammasome Inhibition

IF 1.9 4区 医学 Q3 HEMATOLOGY Microcirculation Pub Date : 2025-03-07 DOI:10.1111/micc.70006
Aliyah Anderson, O'lisa Yaa Waithe, Gabriela Seplovich, Oluwatoyin Olagunju, Christlyn Greene, Amrendra Singh, Saravanakumar Muthusamy, Binu Tharakan
{"title":"Regulation of BzATP-Induced Blood–Brain Barrier Endothelial Cell Hyperpermeability by NLRP3 Inflammasome Inhibition","authors":"Aliyah Anderson,&nbsp;O'lisa Yaa Waithe,&nbsp;Gabriela Seplovich,&nbsp;Oluwatoyin Olagunju,&nbsp;Christlyn Greene,&nbsp;Amrendra Singh,&nbsp;Saravanakumar Muthusamy,&nbsp;Binu Tharakan","doi":"10.1111/micc.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>The blood–brain barrier (BBB) is a semi-permeable microvascular barrier, composed of endothelial cells conjoined by tight junction proteins. Following pathological conditions, i.e., traumatic brain injury (TBI), BBB dysfunction occurs, leading to microvascular hyperpermeability, resulting in cerebral edema formation and elevated intracranial pressure. Recent evidence suggests that the activation of pro-inflammatory signaling pathways is critical to BBB dysfunction. The NLRP3 inflammasome has been implicated as a key component of pro-inflammatory signaling. The aim of this study was to determine the upstream regulators of NLRP3 inflammasome activation that cause subsequent BBB aberration and microvascular hyperpermeability.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Brain microvascular endothelial cells were exposed to benzoyl ATP (BzATP) with or without MCC950. We employed immunocytochemical localization of tight junction proteins, fluorometric enzymatic assays, total gene expression analyses of ZO-1, and monolayer permeability studies to assess the effect of BzATP-induced injury on NLRP3 inflammasome activation/inhibition.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>BzATP treatment induced monolayer hyperpermeability and increased caspase-1 and MMP-9 activities. NLRP3 inhibition decreased caspase-1 and MMP-9 activities and rescued BzATP-induced monolayer permeability significantly.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>NLRP3 inflammasome signaling is critical to BBB endothelial cell dysfunction. Extracellular ATP is an upstream promoter of BBB hyperpermeability. NLRP3 inflammasome activation leads to subsequent caspase-1 and MMP-9-mediated tight junction protein disarray.</p>\n </section>\n </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":"32 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.70006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

The blood–brain barrier (BBB) is a semi-permeable microvascular barrier, composed of endothelial cells conjoined by tight junction proteins. Following pathological conditions, i.e., traumatic brain injury (TBI), BBB dysfunction occurs, leading to microvascular hyperpermeability, resulting in cerebral edema formation and elevated intracranial pressure. Recent evidence suggests that the activation of pro-inflammatory signaling pathways is critical to BBB dysfunction. The NLRP3 inflammasome has been implicated as a key component of pro-inflammatory signaling. The aim of this study was to determine the upstream regulators of NLRP3 inflammasome activation that cause subsequent BBB aberration and microvascular hyperpermeability.

Methods

Brain microvascular endothelial cells were exposed to benzoyl ATP (BzATP) with or without MCC950. We employed immunocytochemical localization of tight junction proteins, fluorometric enzymatic assays, total gene expression analyses of ZO-1, and monolayer permeability studies to assess the effect of BzATP-induced injury on NLRP3 inflammasome activation/inhibition.

Results

BzATP treatment induced monolayer hyperpermeability and increased caspase-1 and MMP-9 activities. NLRP3 inhibition decreased caspase-1 and MMP-9 activities and rescued BzATP-induced monolayer permeability significantly.

Conclusions

NLRP3 inflammasome signaling is critical to BBB endothelial cell dysfunction. Extracellular ATP is an upstream promoter of BBB hyperpermeability. NLRP3 inflammasome activation leads to subsequent caspase-1 and MMP-9-mediated tight junction protein disarray.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microcirculation
Microcirculation 医学-外周血管病
CiteScore
5.00
自引率
4.20%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation. Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.
期刊最新文献
Regulation of BzATP-Induced Blood–Brain Barrier Endothelial Cell Hyperpermeability by NLRP3 Inflammasome Inhibition Hyperspectral Imaging in the Healing Prognosis of Diabetes Related Foot Ulcers. A Systematic Review and Meta-Analysis Issue Information Small Arteries From Old Spontaneously Hypertensive Rats Exhibit Enhanced Endothelium-Independent Vasodilatory Capacity and Reduced Stiffness Simulation of Conducted Responses in Microvascular Networks: Role of Gap Junction Current Rectification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1