Validating a double Gaussian source model for small proton fields in a commercial Monte-Carlo dose calculation engine

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2023-11-01 DOI:10.1016/j.zemedi.2022.11.011
Fabian Kugel , Jörg Wulff , Christian Bäumer , Martin Janson , Jana Kretschmer , Leonie Brodbek , Carina Behrends , Nico Verbeek , Hui Khee Looe , Björn Poppe , Beate Timmermann
{"title":"Validating a double Gaussian source model for small proton fields in a commercial Monte-Carlo dose calculation engine","authors":"Fabian Kugel ,&nbsp;Jörg Wulff ,&nbsp;Christian Bäumer ,&nbsp;Martin Janson ,&nbsp;Jana Kretschmer ,&nbsp;Leonie Brodbek ,&nbsp;Carina Behrends ,&nbsp;Nico Verbeek ,&nbsp;Hui Khee Looe ,&nbsp;Björn Poppe ,&nbsp;Beate Timmermann","doi":"10.1016/j.zemedi.2022.11.011","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The primary fluence of a proton pencil beam exiting the accelerator is enveloped by a region of secondaries, commonly called “spray”. Although small in magnitude, this spray may affect dose distributions in pencil beam scanning mode e.g., in the calculation of the small field output, if not modelled properly in a treatment planning system (TPS). The purpose of this study was to dosimetrically benchmark the Monte Carlo (MC) dose engine of the RayStation TPS (v.10A) in small proton fields and systematically compare single Gaussian (SG) and double Gaussian (DG) modeling of initial proton fluence providing a more accurate representation of the nozzle spray.</p></div><div><h3>Methods</h3><p>The initial proton fluence distribution for SG/DG beam modeling was deduced from two-dimensional measurements in air with a scintillation screen with electronic readout. The DG model was either based on direct fits of the two Gaussians to the measured profiles, or by an iterative optimization procedure, which uses the measured profiles to mimic in-air scan-field factor (SF) measurements. To validate the DG beam models SFs, i.e. relative doses to a 10 × 10 cm<sup>2</sup> field, were measured in water for three different initial proton energies (<span><math><mrow><mn>100</mn><mspace></mspace><mspace></mspace><mi>M</mi><mi>e</mi><mi>V</mi></mrow></math></span>, <span><math><mrow><mn>160</mn><mspace></mspace><mspace></mspace><mi>M</mi><mi>e</mi><mi>V</mi></mrow></math></span>, <span><math><mrow><mn>226.7</mn><mspace></mspace><mspace></mspace><mi>M</mi><mi>e</mi><mi>V</mi></mrow></math></span>) and square field sizes from <span><math><mrow><mn>1</mn><mspace></mspace><mo>×</mo><mn>1</mn><mspace></mspace><mspace></mspace><msup><mrow><mi>c</mi><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> to <span><math><mrow><mn>10</mn><mspace></mspace><mo>×</mo><mn>10</mn><mspace></mspace><mspace></mspace><msup><mrow><mi>c</mi><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> using a small field ionization chamber (IBA CC01) and an IBA ProteusPlus system (universal nozzle). Furthermore, the dose to the center of spherical target volumes (diameters: <span><math><mrow><mn>1</mn><mspace></mspace><mspace></mspace><mi>c</mi><mi>m</mi></mrow></math></span> to <span><math><mrow><mn>10</mn><mspace></mspace><mspace></mspace><mi>c</mi><mi>m</mi></mrow></math></span>) was determined using the same small volume ionization chamber (IC). A comprehensive uncertainty analysis was performed, including estimates of influence factors typical for small field dosimetry deduced from a simple two-dimensional analytical model of the relative fluence distribution. Measurements were compared to the predictions of the RayStation TPS.</p></div><div><h3>Results</h3><p>SFs deviated by more than <span><math><mrow><mn>2</mn><mspace></mspace><mo>%</mo></mrow></math></span> from TPS predictions in all fields <span><math><mrow><mo>&lt;</mo><mn>4</mn><mspace></mspace><mo>×</mo><mn>4</mn><mspace></mspace><mspace></mspace><msup><mrow><mi>c</mi><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> with a maximum deviation of <span><math><mrow><mn>5.8</mn><mspace></mspace><mo>%</mo></mrow></math></span> for SG modeling. In contrast, deviations were smaller than <span><math><mrow><mn>2</mn><mspace></mspace><mo>%</mo></mrow></math></span> for all field-sizes and proton energies when using the directly fitted DG model. The optimized DG model performed similarly except for slightly larger deviations in the <span><math><mrow><mn>1</mn><mspace></mspace><mo>×</mo><mn>1</mn><mspace></mspace><mspace></mspace><msup><mrow><mi>c</mi><mi>m</mi></mrow><mn>2</mn></msup></mrow></math></span> scan-fields. The uncertainty estimates showed a significant impact of pencil beam size variations (<span><math><mrow><mo>±</mo><mn>5</mn><mspace></mspace><mo>%</mo></mrow></math></span>) resulting in up to <span><math><mrow><mn>5.0</mn><mspace></mspace><mo>%</mo></mrow></math></span> standard uncertainty. The point doses within spherical irradiation volumes deviated from calculations by up to <span><math><mrow><mn>3.3</mn><mspace></mspace><mo>%</mo></mrow></math></span> for the SG model and <span><math><mrow><mn>2.0</mn><mspace></mspace><mo>%</mo></mrow></math></span> for the DG model.</p></div><div><h3>Conclusion</h3><p>Properly representing nozzle spray in RayStation’s MC-based dose engine using a DG beam model was found to reduce the deviation to measurements in small spherical targets to below <span><math><mrow><mn>2</mn><mspace></mspace><mo>%</mo></mrow></math></span>. A thorough uncertainty analysis shows a similar magnitude for the combined standard uncertainty of such measurements.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922001325/pdfft?md5=acc41f4e71e3b623bcf07aca85ececd9&pid=1-s2.0-S0939388922001325-main.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388922001325","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 3

Abstract

Purpose

The primary fluence of a proton pencil beam exiting the accelerator is enveloped by a region of secondaries, commonly called “spray”. Although small in magnitude, this spray may affect dose distributions in pencil beam scanning mode e.g., in the calculation of the small field output, if not modelled properly in a treatment planning system (TPS). The purpose of this study was to dosimetrically benchmark the Monte Carlo (MC) dose engine of the RayStation TPS (v.10A) in small proton fields and systematically compare single Gaussian (SG) and double Gaussian (DG) modeling of initial proton fluence providing a more accurate representation of the nozzle spray.

Methods

The initial proton fluence distribution for SG/DG beam modeling was deduced from two-dimensional measurements in air with a scintillation screen with electronic readout. The DG model was either based on direct fits of the two Gaussians to the measured profiles, or by an iterative optimization procedure, which uses the measured profiles to mimic in-air scan-field factor (SF) measurements. To validate the DG beam models SFs, i.e. relative doses to a 10 × 10 cm2 field, were measured in water for three different initial proton energies (100MeV, 160MeV, 226.7MeV) and square field sizes from 1×1cm2 to 10×10cm2 using a small field ionization chamber (IBA CC01) and an IBA ProteusPlus system (universal nozzle). Furthermore, the dose to the center of spherical target volumes (diameters: 1cm to 10cm) was determined using the same small volume ionization chamber (IC). A comprehensive uncertainty analysis was performed, including estimates of influence factors typical for small field dosimetry deduced from a simple two-dimensional analytical model of the relative fluence distribution. Measurements were compared to the predictions of the RayStation TPS.

Results

SFs deviated by more than 2% from TPS predictions in all fields <4×4cm2 with a maximum deviation of 5.8% for SG modeling. In contrast, deviations were smaller than 2% for all field-sizes and proton energies when using the directly fitted DG model. The optimized DG model performed similarly except for slightly larger deviations in the 1×1cm2 scan-fields. The uncertainty estimates showed a significant impact of pencil beam size variations (±5%) resulting in up to 5.0% standard uncertainty. The point doses within spherical irradiation volumes deviated from calculations by up to 3.3% for the SG model and 2.0% for the DG model.

Conclusion

Properly representing nozzle spray in RayStation’s MC-based dose engine using a DG beam model was found to reduce the deviation to measurements in small spherical targets to below 2%. A thorough uncertainty analysis shows a similar magnitude for the combined standard uncertainty of such measurements.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在商用蒙特卡洛剂量计算引擎中验证小质子场的双高斯源模型
目的质子铅笔束从加速器中流出时,会被一个通常称为 "喷雾 "的二次束区域所包围。虽然喷射量很小,但如果治疗计划系统(TPS)建模不当,可能会影响铅笔束扫描模式下的剂量分布,例如在计算小场输出时。本研究的目的是对 RayStation TPS(v.10A)在小质子场中的蒙特卡罗(MC)剂量引擎进行剂量测定基准测试,并系统比较初始质子通量的单高斯(SG)和双高斯(DG)建模,以更准确地表示喷嘴喷雾。DG 模型要么基于两个高斯与测量剖面的直接拟合,要么基于迭代优化程序,该程序使用测量剖面来模拟空气中的扫描场因子(SF)测量。为了验证 DG 射束模型的 SFs,即 10 × 10 cm2 场的相对剂量,使用小场电离室(IBA CC01)和 IBA ProteusPlus 系统(通用喷嘴)在水中测量了三种不同的初始质子能量(100MeV、160MeV、226.7MeV)和 1×1 cm2 到 10×10 cm2 的正方形场。此外,还使用相同的小体积电离室(IC)测定了球形靶体积(直径:1 厘米至 10 厘米)中心的剂量。进行了全面的不确定性分析,包括根据相对通量分布的简单二维分析模型推导出的小场剂量测定典型影响因素的估计值。测量结果与 RayStation TPS 的预测结果进行了比较。结果在所有 4×4 平方厘米的场中,SF 与 TPS 预测结果的偏差都超过了 2%,SG 模型的最大偏差为 5.8%。相比之下,使用直接拟合的 DG 模型时,所有场大小和质子能量的偏差都小于 2%。优化后的 DG 模型除了在 1×1 平方厘米扫描场中偏差稍大外,其他表现类似。不确定性估计显示,铅笔束尺寸变化(±5%)的影响很大,导致高达 5.0% 的标准不确定性。在球形辐照体积内的点剂量,SG 模型与计算结果的偏差高达 3.3%,而 DG 模型则为 2.0%。全面的不确定性分析表明,此类测量的综合标准不确定性也有类似程度的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Development and clinical implementation of a digital system for risk assessments for radiation therapy End-to-end testing for stereotactic radiotherapy including the development of a Multi-Modality phantom Note on uncertainty in Monte Carlo dose calculations and its relation to microdosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1