Vascular Lesions and Brain Atrophy in Alzheimer's, Vascular and Mixed Dementia: An Optimized 3T MRI Protocol Reveals Distinctive Radiological Profiles.
Matteo Cotta Ramusino, Paolo Vitali, Nicoletta Anzalone, Luca Melazzini, Francesca Paola Lombardo, Lisa Maria Farina, Sara Bernini, Alfredo Costa
{"title":"Vascular Lesions and Brain Atrophy in Alzheimer's, Vascular and Mixed Dementia: An Optimized 3T MRI Protocol Reveals Distinctive Radiological Profiles.","authors":"Matteo Cotta Ramusino, Paolo Vitali, Nicoletta Anzalone, Luca Melazzini, Francesca Paola Lombardo, Lisa Maria Farina, Sara Bernini, Alfredo Costa","doi":"10.2174/1567205019666220620112831","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vascular lesions may be a common finding also in Alzheimer's dementia, but their role on cognitive status is uncertain.</p><p><strong>Objective: </strong>The study aims to investigate their distribution in patients with Alzheimer's, vascular or mixed dementia and detect any distinctive neuroradiological profiles.</p><p><strong>Methods: </strong>Seventy-six subjects received a diagnosis of Alzheimer's (AD=32), vascular (VD=26) and mixed (MD=18) dementia. Three independent raters assessed the brain images acquired with an optimized 3T MRI protocol (including (3D FLAIR, T1, SWI, and 2D coronal T2 sequences) using semiquantitative scales for vascular lesions (periventricular lesions (PVL), deep white matter lesions (DWML), deep grey matter lesions (DGML), enlarged perivascular spaces (PVS), and microbleeds (MB)) and brain atrophy (medial temporal atrophy (MTA), posterior atrophy (PA), global cortical atrophy- frontal (GCA-F) and Evans' index).</p><p><strong>Results: </strong>Raters reached a good-to-excellent agreement for all scales (ICC ranging from 0.78-0.96). A greater number of PVL (p<0.001), DWML (p<0.001), DGML (p=0.010), and PVS (p=0.001) was observed in VD compared to AD, while MD showed a significant greater number of PVL (p=0.001), DWML (p=0.002), DGML (p=0.018), and deep and juxtacortical MB (p=0.006 and p<0.001, respectively). Comparing VD and MD, VD showed a higher number of PVS in basal ganglia and centrum semiovale (p=0.040), while MD showed more deep and juxtacortical MB (p=0.042 and p=0.022, respectively). No significant difference was observed in scores of cortical atrophy scales and Evans' index among the three groups.</p><p><strong>Conclusion: </strong>The proposed MRI protocol represents a useful advancement in the diagnostic assessment of patients with cognitive impairment by more accurately detecting vascular lesions, mainly microbleeds, without a significant increase in time and resource expenditure. Our findings confirm that white and grey matter lesions predominate in vascular and mixed dementia, whereas deep and juxtacortical microbleeds predominate in mixed dementia, suggesting that cerebral amyloid angiopathy could be the main underlying pathology.</p>","PeriodicalId":10810,"journal":{"name":"Current Alzheimer research","volume":"19 6","pages":"449-457"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567205019666220620112831","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: Vascular lesions may be a common finding also in Alzheimer's dementia, but their role on cognitive status is uncertain.
Objective: The study aims to investigate their distribution in patients with Alzheimer's, vascular or mixed dementia and detect any distinctive neuroradiological profiles.
Methods: Seventy-six subjects received a diagnosis of Alzheimer's (AD=32), vascular (VD=26) and mixed (MD=18) dementia. Three independent raters assessed the brain images acquired with an optimized 3T MRI protocol (including (3D FLAIR, T1, SWI, and 2D coronal T2 sequences) using semiquantitative scales for vascular lesions (periventricular lesions (PVL), deep white matter lesions (DWML), deep grey matter lesions (DGML), enlarged perivascular spaces (PVS), and microbleeds (MB)) and brain atrophy (medial temporal atrophy (MTA), posterior atrophy (PA), global cortical atrophy- frontal (GCA-F) and Evans' index).
Results: Raters reached a good-to-excellent agreement for all scales (ICC ranging from 0.78-0.96). A greater number of PVL (p<0.001), DWML (p<0.001), DGML (p=0.010), and PVS (p=0.001) was observed in VD compared to AD, while MD showed a significant greater number of PVL (p=0.001), DWML (p=0.002), DGML (p=0.018), and deep and juxtacortical MB (p=0.006 and p<0.001, respectively). Comparing VD and MD, VD showed a higher number of PVS in basal ganglia and centrum semiovale (p=0.040), while MD showed more deep and juxtacortical MB (p=0.042 and p=0.022, respectively). No significant difference was observed in scores of cortical atrophy scales and Evans' index among the three groups.
Conclusion: The proposed MRI protocol represents a useful advancement in the diagnostic assessment of patients with cognitive impairment by more accurately detecting vascular lesions, mainly microbleeds, without a significant increase in time and resource expenditure. Our findings confirm that white and grey matter lesions predominate in vascular and mixed dementia, whereas deep and juxtacortical microbleeds predominate in mixed dementia, suggesting that cerebral amyloid angiopathy could be the main underlying pathology.
期刊介绍:
Current Alzheimer Research publishes peer-reviewed frontier review, research, drug clinical trial studies and letter articles on all areas of Alzheimer’s disease. This multidisciplinary journal will help in understanding the neurobiology, genetics, pathogenesis, and treatment strategies of Alzheimer’s disease. The journal publishes objective reviews written by experts and leaders actively engaged in research using cellular, molecular, and animal models. The journal also covers original articles on recent research in fast emerging areas of molecular diagnostics, brain imaging, drug development and discovery, and clinical aspects of Alzheimer’s disease. Manuscripts are encouraged that relate to the synergistic mechanism of Alzheimer''s disease with other dementia and neurodegenerative disorders. Book reviews, meeting reports and letters-to-the-editor are also published. The journal is essential reading for researchers, educators and physicians with interest in age-related dementia and Alzheimer’s disease. Current Alzheimer Research provides a comprehensive ''bird''s-eye view'' of the current state of Alzheimer''s research for neuroscientists, clinicians, health science planners, granting, caregivers and families of this devastating disease.