{"title":"Obesity Is Associated With Gait Alterations and Gait Asymmetry in Older Adults.","authors":"Hao Meng, Stacey L Gorniak","doi":"10.1123/mc.2021-0125","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The prevalence of obesity (OB) has increased in the older adult (OA) population. However, it is not quite clear whether OB exaggerates gait instability and leads to a higher risk of falls in OAs. The first goal of this study was to investigate whether OB is associated with gait alterations and gait asymmetry in OAs. The second goal of this study was to examine relationships between various OB measures with gait measures and gait symmetry measures in OAs.</p><p><strong>Methods: </strong>A total of 30 OAs were included and categorized according to their body mass index (BMI) values into groups of persons with normal weight (NW), overweight (OW), and OB. Participants were required to complete an anthropometric assessment, a body composition assessment, and overground walking tests.</p><p><strong>Results: </strong>The group with OB had shorter swing phase, longer stance phase, and shorter single support phase than the NW group. Increased body weight, BMI, visceral adipose tissue mass, and android fat had correlations with shorter swing phase, longer stance phase, and shorter single support phase. Increased body weight and BMI had significantly positive correlations with symmetry index of knee range of motion.</p><p><strong>Conclusions: </strong>OB may impair gait automation capacity in OAs. Both body weight and BMI remain good measures in terms of establishing correlations with gait stability in OAs. However, the amount of fat mass surrounding the abdomen could be vital to interpreting the alterations in the gait of OAs with obesity.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 1","pages":"6-19"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2021-0125","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2
Abstract
Objectives: The prevalence of obesity (OB) has increased in the older adult (OA) population. However, it is not quite clear whether OB exaggerates gait instability and leads to a higher risk of falls in OAs. The first goal of this study was to investigate whether OB is associated with gait alterations and gait asymmetry in OAs. The second goal of this study was to examine relationships between various OB measures with gait measures and gait symmetry measures in OAs.
Methods: A total of 30 OAs were included and categorized according to their body mass index (BMI) values into groups of persons with normal weight (NW), overweight (OW), and OB. Participants were required to complete an anthropometric assessment, a body composition assessment, and overground walking tests.
Results: The group with OB had shorter swing phase, longer stance phase, and shorter single support phase than the NW group. Increased body weight, BMI, visceral adipose tissue mass, and android fat had correlations with shorter swing phase, longer stance phase, and shorter single support phase. Increased body weight and BMI had significantly positive correlations with symmetry index of knee range of motion.
Conclusions: OB may impair gait automation capacity in OAs. Both body weight and BMI remain good measures in terms of establishing correlations with gait stability in OAs. However, the amount of fat mass surrounding the abdomen could be vital to interpreting the alterations in the gait of OAs with obesity.
期刊介绍:
Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation.
Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders.
Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement.
In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.