Cesium could be used as a proxy for potassium in mycorrhizal Medicago truncatula.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-12-31 DOI:10.1080/15592324.2022.2134676
Arjun Kafle, Kevin Garcia
{"title":"Cesium could be used as a proxy for potassium in mycorrhizal <i>Medicago truncatula</i>.","authors":"Arjun Kafle,&nbsp;Kevin Garcia","doi":"10.1080/15592324.2022.2134676","DOIUrl":null,"url":null,"abstract":"<p><p>Arbuscular mycorrhizal (AM) fungi interact with the roots of most land plants and help them to acquire various mineral resources from the soil, including potassium (K<sup>+</sup>). However, tracking K<sup>+</sup> movement in AM symbiosis remains challenging. Recently, we reported that rubidium can be used as a proxy for K<sup>+</sup> in mycorrhizal <i>Medicago truncatula</i>. In the present work, we investigated the possibility of using cesium (Cs<sup>+</sup>) as another proxy for K<sup>+</sup> in AM symbiosis. Plants were placed in growing systems that include a separate compartment only accessible to the AM fungus <i>Rhizophagus irregularis</i> isolate 09 and in which various amounts of cesium chloride (0 mM, 0.5 mM, 1.5 mM, or 3.75 mM) were supplied. Plants were watered with sufficient K<sup>+</sup> or K<sup>+</sup>-free nutrient solutions, and shoot and root biomass, fungal colonization, and K<sup>+</sup> and Cs<sup>+</sup> concentrations were recorded seven weeks after inoculation. Our results indicate that Cs<sup>+</sup> accumulated in plant tissues only when K<sup>+</sup> was present in the nutrient solution and when the highest concentration of Cs<sup>+</sup> was used in the fungal compartment. Consequently, we conclude that Cs<sup>+</sup> could be used as a proxy for K<sup>+</sup> in AM symbiosis, but with serious limitations.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586695/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592324.2022.2134676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Arbuscular mycorrhizal (AM) fungi interact with the roots of most land plants and help them to acquire various mineral resources from the soil, including potassium (K+). However, tracking K+ movement in AM symbiosis remains challenging. Recently, we reported that rubidium can be used as a proxy for K+ in mycorrhizal Medicago truncatula. In the present work, we investigated the possibility of using cesium (Cs+) as another proxy for K+ in AM symbiosis. Plants were placed in growing systems that include a separate compartment only accessible to the AM fungus Rhizophagus irregularis isolate 09 and in which various amounts of cesium chloride (0 mM, 0.5 mM, 1.5 mM, or 3.75 mM) were supplied. Plants were watered with sufficient K+ or K+-free nutrient solutions, and shoot and root biomass, fungal colonization, and K+ and Cs+ concentrations were recorded seven weeks after inoculation. Our results indicate that Cs+ accumulated in plant tissues only when K+ was present in the nutrient solution and when the highest concentration of Cs+ was used in the fungal compartment. Consequently, we conclude that Cs+ could be used as a proxy for K+ in AM symbiosis, but with serious limitations.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铯可以作为菌根紫花苜蓿中钾的代用物。
丛枝菌根(AM)真菌与大多数陆地植物的根相互作用,并帮助它们从土壤中获取各种矿物资源,包括钾(K+)。然而,在AM共生关系中追踪K+的运动仍然具有挑战性。最近,我们报道了铷可以作为菌根紫花苜蓿中K+的代用物。在目前的工作中,我们研究了在AM共生中使用铯(Cs+)作为K+的另一个代理的可能性。植物被放置在生长系统中,该系统包括一个单独的隔间,只有AM真菌Rhizophagus irregularis分离株09才能进入,并提供不同量的氯化铯(0 mM, 0.5 mM, 1.5 mM或3.75 mM)。接种7周后,用充足的K+或不含K+的营养液浇灌植株,记录茎部和根系生物量、真菌定植量以及K+和Cs+浓度。结果表明,只有营养液中含有K+和真菌室中Cs+浓度最高时,Cs+才会在植物组织中积累。因此,我们得出结论,Cs+可以作为AM共生中K+的代理,但存在严重的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1