Rodrigo Felgueiras, Ana C Neto, Adriana R Rodrigues, Alexandra M Gouveia, Henrique Almeida, Delminda Neves
{"title":"Anti-oxidant effect of metformin through AMPK/SIRT1/PGC-1α/SIRT3- independent GPx1 expression in the heart of mice with endometriosis.","authors":"Rodrigo Felgueiras, Ana C Neto, Adriana R Rodrigues, Alexandra M Gouveia, Henrique Almeida, Delminda Neves","doi":"10.1515/hmbci-2022-0039","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Endometriosis is a gynecological disease associated with an imbalance between oxidative species production and anti-oxidative defenses. In women, endometriosis has been reported to associate with increased incidence of cardiovascular events. As such, this study aimed to analyze the oxidation-responsive AMPK/SIRT1/PGC-1α/SIRT3 pathway in the heart of a mouse model of endometriosis. The effect of metformin, an insulin-sensitizing and anti-oxidative drug with already shown positive results in endometriotic tissue was studied.</p><p><strong>Methods: </strong>Thirty-six female B6CBA/F1 mice were divided into 4 groups (Control-C, Surgery-induced Endometriosis and Metformin-EM (50 mg/kg/day orally administrated for 3 months), Endometriosis-E and Metformin-M). Immunofluorescent labelling of SIRT1 and SIRT3 was performed in the heart tissue. Assessment of expression of AMPKα, SIRT1, PGC-1α, SIRT3, SOD2, and GPx1 was performed by Western Blotting. The quantification of microRNA(miR)-34a, miR-195, miR-217, miR-155 and miR-421, involved in the regulation of expression of SIRT1 and SIRT3, was performed by Real-Time PCR.</p><p><strong>Results: </strong>Data showed an increase in phospho-AMPKα and in GPx1 expression in the EM group when compared to the C group, but not in the total AMPK, SIRT1, PGC-1α, SIRT3 and SOD2, suggesting a GPx1 expression increase independently of the AMPK/SIRT1/PGC-1α/SIRT3 pathway. MicroRNAs, excepting miR-217, showed a consistent trend of increase in the M group.</p><p><strong>Conclusions: </strong>Our study showed that endometriosis does not significantly affect the expression of the components of the AMPK/SIRT1/PGC-1α/SIRT3 pathway in the heart. However, it indicates that an oxidative condition underlying endometriosis is required for metformin to evidence an increment in the expression of the anti-oxidative enzyme GPx1.</p>","PeriodicalId":13224,"journal":{"name":"Hormone Molecular Biology and Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormone Molecular Biology and Clinical Investigation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/hmbci-2022-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Endometriosis is a gynecological disease associated with an imbalance between oxidative species production and anti-oxidative defenses. In women, endometriosis has been reported to associate with increased incidence of cardiovascular events. As such, this study aimed to analyze the oxidation-responsive AMPK/SIRT1/PGC-1α/SIRT3 pathway in the heart of a mouse model of endometriosis. The effect of metformin, an insulin-sensitizing and anti-oxidative drug with already shown positive results in endometriotic tissue was studied.
Methods: Thirty-six female B6CBA/F1 mice were divided into 4 groups (Control-C, Surgery-induced Endometriosis and Metformin-EM (50 mg/kg/day orally administrated for 3 months), Endometriosis-E and Metformin-M). Immunofluorescent labelling of SIRT1 and SIRT3 was performed in the heart tissue. Assessment of expression of AMPKα, SIRT1, PGC-1α, SIRT3, SOD2, and GPx1 was performed by Western Blotting. The quantification of microRNA(miR)-34a, miR-195, miR-217, miR-155 and miR-421, involved in the regulation of expression of SIRT1 and SIRT3, was performed by Real-Time PCR.
Results: Data showed an increase in phospho-AMPKα and in GPx1 expression in the EM group when compared to the C group, but not in the total AMPK, SIRT1, PGC-1α, SIRT3 and SOD2, suggesting a GPx1 expression increase independently of the AMPK/SIRT1/PGC-1α/SIRT3 pathway. MicroRNAs, excepting miR-217, showed a consistent trend of increase in the M group.
Conclusions: Our study showed that endometriosis does not significantly affect the expression of the components of the AMPK/SIRT1/PGC-1α/SIRT3 pathway in the heart. However, it indicates that an oxidative condition underlying endometriosis is required for metformin to evidence an increment in the expression of the anti-oxidative enzyme GPx1.
期刊介绍:
Hormone Molecular Biology and Clinical Investigation (HMBCI) is dedicated to the provision of basic data on molecular aspects of hormones in physiology and pathophysiology. The journal covers the treatment of major diseases, such as endocrine cancers (breast, prostate, endometrium, ovary), renal and lymphoid carcinoma, hypertension, cardiovascular systems, osteoporosis, hormone deficiency in menopause and andropause, obesity, diabetes, brain and related diseases, metabolic syndrome, sexual dysfunction, fetal and pregnancy diseases, as well as the treatment of dysfunctions and deficiencies. HMBCI covers new data on the different steps and factors involved in the mechanism of hormone action. It will equally examine the relation of hormones with the immune system and its environment, as well as new developments in hormone measurements. HMBCI is a blind peer reviewed journal and publishes in English: Original articles, Reviews, Mini Reviews, Short Communications, Case Reports, Letters to the Editor and Opinion papers. Ahead-of-print publishing ensures faster processing of fully proof-read, DOI-citable articles.