Biosynthesis of Isonitrile- and Alkyne-Containing Natural Products.

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED Annual review of chemical and biomolecular engineering Pub Date : 2022-06-10 Epub Date: 2022-03-02 DOI:10.1146/annurev-chembioeng-092120-025140
Antonio Del Rio Flores, Colin C Barber, Maanasa Narayanamoorthy, Di Gu, Yuanbo Shen, Wenjun Zhang
{"title":"Biosynthesis of Isonitrile- and Alkyne-Containing Natural Products.","authors":"Antonio Del Rio Flores, Colin C Barber, Maanasa Narayanamoorthy, Di Gu, Yuanbo Shen, Wenjun Zhang","doi":"10.1146/annurev-chembioeng-092120-025140","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"13 ","pages":"1-24"},"PeriodicalIF":7.6000,"publicationDate":"2022-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811556/pdf/nihms-1857862.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-092120-025140","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含异腈和炔烃天然产物的生物合成。
天然产物是一类种类繁多的生物化合物,参与细胞信号传递、营养获取和干扰竞争等基本生物过程。异腈和炔烃等独特的三键官能团通常具有生物活性,可作为新型化学逻辑和酶机制的指标。然而,人们对这些官能团的生物合成基础仍然只有部分了解,这限制了合理设计具有这些官能团的生物大分子以应用于制药、生物正交化学和其他增值化学过程的机会。在此,我们将重点回顾异腈和炔烃官能团的特征生物合成途径、它们的生物正交转化,以及将它们的生物合成机制工程化用于生物技术应用的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
期刊最新文献
Reassessing the Standard Chemotaxis Framework for Understanding Biased Migration in Helicobacter pylori. Models for Decarbonization in the Chemical Industry. Introduction. Will Hydrogen Be a New Natural Gas? Hydrogen Integration in Natural Gas Grids. Fluid Ejections in Nature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1