Two New Models for Item Preknowledge.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2022-09-01 DOI:10.1177/01466216221108130
Kylie Gorney, James A Wollack
{"title":"Two New Models for Item Preknowledge.","authors":"Kylie Gorney,&nbsp;James A Wollack","doi":"10.1177/01466216221108130","DOIUrl":null,"url":null,"abstract":"<p><p>To evaluate preknowledge detection methods, researchers often conduct simulation studies in which they use models to generate the data. In this article, we propose two new models to represent item preknowledge. Contrary to existing models, we allow the impact of preknowledge to vary across persons and items in order to better represent situations that are encountered in practice. We use three real data sets to evaluate the fit of the new models with respect to two types of preknowledge: items only, and items and the correct answer key. Results show that the two new models provide the best fit compared to several other existing preknowledge models. Furthermore, model parameter estimates were found to vary substantially depending on the type of preknowledge being considered, indicating that answer key disclosure has a profound impact on testing behavior.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9382093/pdf/10.1177_01466216221108130.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216221108130","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 2

Abstract

To evaluate preknowledge detection methods, researchers often conduct simulation studies in which they use models to generate the data. In this article, we propose two new models to represent item preknowledge. Contrary to existing models, we allow the impact of preknowledge to vary across persons and items in order to better represent situations that are encountered in practice. We use three real data sets to evaluate the fit of the new models with respect to two types of preknowledge: items only, and items and the correct answer key. Results show that the two new models provide the best fit compared to several other existing preknowledge models. Furthermore, model parameter estimates were found to vary substantially depending on the type of preknowledge being considered, indicating that answer key disclosure has a profound impact on testing behavior.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
项目预知的两个新模型。
为了评估预知检测方法,研究人员经常进行模拟研究,他们使用模型来生成数据。在本文中,我们提出了两个新的模型来表示项目预知。与现有模型相反,我们允许预知的影响因人而异,以便更好地代表实践中遇到的情况。我们使用三个真实数据集来评估新模型在两种类型的预知方面的拟合性:仅项目和项目和正确答案关键。结果表明,与已有的几种预知模型相比,这两个模型的拟合效果最好。此外,模型参数估计值根据所考虑的预知类型而有很大差异,这表明答案键披露对测试行为有深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Effect of Differential Item Functioning on Computer Adaptive Testing Under Different Conditions. Evaluating the Construct Validity of Instructional Manipulation Checks as Measures of Careless Responding to Surveys. A Mark-Recapture Approach to Estimating Item Pool Compromise. Estimating Test-Retest Reliability in the Presence of Self-Selection Bias and Learning/Practice Effects. The Improved EMS Algorithm for Latent Variable Selection in M3PL Model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1