Compound Optimal Design for Online Item Calibration Under the Two-Parameter Logistic Model.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL Applied Psychological Measurement Pub Date : 2025-01-28 DOI:10.1177/01466216251316276
Lihong Song, Wenyi Wang
{"title":"Compound Optimal Design for Online Item Calibration Under the Two-Parameter Logistic Model.","authors":"Lihong Song, Wenyi Wang","doi":"10.1177/01466216251316276","DOIUrl":null,"url":null,"abstract":"<p><p>Under the theory of sequential design, compound optimal design with two optimality criteria can be used to solve the problem of efficient calibration of item parameters of item response theory model. In order to efficiently calibrate item parameters in computerized testing, a compound optimal design is proposed for the simultaneous estimation of item difficulty and discrimination parameters under the two-parameter logistic model, which adaptively focuses on optimizing the parameter which is difficult to estimate. The compound optimal design using the acceptance probability can provide ability design points to optimize the item difficulty and discrimination parameters, respectively. Simulation and real data analysis studies showed that the compound optimal design outperformed than the D-optimal and random design in terms of the recovery of both discrimination and difficulty parameters.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251316276"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775943/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251316276","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Under the theory of sequential design, compound optimal design with two optimality criteria can be used to solve the problem of efficient calibration of item parameters of item response theory model. In order to efficiently calibrate item parameters in computerized testing, a compound optimal design is proposed for the simultaneous estimation of item difficulty and discrimination parameters under the two-parameter logistic model, which adaptively focuses on optimizing the parameter which is difficult to estimate. The compound optimal design using the acceptance probability can provide ability design points to optimize the item difficulty and discrimination parameters, respectively. Simulation and real data analysis studies showed that the compound optimal design outperformed than the D-optimal and random design in terms of the recovery of both discrimination and difficulty parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
期刊最新文献
Semi-Parametric Item Response Theory With O'Sullivan Splines for Item Responses and Response Time. Compound Optimal Design for Online Item Calibration Under the Two-Parameter Logistic Model. Application of Bayesian Decision Theory in Detecting Test Fraud. Comparing Approaches to Estimating Person Parameters for the MUPP Model. R Package for Calculating Estimators of the Proportion of Explained Variance and Standardized Regression Coefficients in Multiply Imputed Datasets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1