Integrated approach for non-Darcy flow in hydraulic fractures considering different fracture geometries and reservoir characteristics

IF 2.6 Q3 ENERGY & FUELS Upstream Oil and Gas Technology Pub Date : 2020-10-01 DOI:10.1016/j.upstre.2020.100011
Fadhil S. Kadhim , Salam Al-Rbeawi , Ghanim M. Farman
{"title":"Integrated approach for non-Darcy flow in hydraulic fractures considering different fracture geometries and reservoir characteristics","authors":"Fadhil S. Kadhim ,&nbsp;Salam Al-Rbeawi ,&nbsp;Ghanim M. Farman","doi":"10.1016/j.upstre.2020.100011","DOIUrl":null,"url":null,"abstract":"<div><p>The motivation is eliminating the uncertainties in predicting reservoir performance, and reducing the errors in the reservoir characterization<span> resulted by neglecting the impact of non-Darcy flow. In this study, an analytical multi-linear flow regimes model has been developed for pressure distribution in hydraulically fractured reservoirs and modified for the existence of non-Darcy flow by introducing the rate-dependent skin factor to the flow equations. This model is solved for different impacts of non-Darcy flow by assuming a constant flow rate<span> and different non-Darcy flow coefficients. The effects of different cross-section areas of flow inside hydraulic fractures on the non-Darcy flow coefficient are considered in this study as well as different fracture conductivities. Reservoir configurations and petrophysical properties are also considered in calculating pressure distributions. Analytical models for hydraulic fracture linear flow regime, bi-linear flow regime, and boundary-dominated flow regime are developed based on pressure responses for different non-Darcy flow impact. Analytical models for transient and pseudo-steady state productivity indices are presented in this paper to demonstrate the impact of non-Darcy flow on these indices. The results of this study showed there are considerable effects of non-Darcy flow on reservoir performance and developed analytical mathematical models for recognized flow regimes which observed during reservoir production period. Additionally, results illustrated the reservoir configurations and petrophysical properties may not have significant contribution in developing non-Darcy flow. Finally, the productivity index has been sharply declined for later production time. Meanwhile, it is constant for high rate-dependent skin factors at the early time of production.</span></span></p></div>","PeriodicalId":101264,"journal":{"name":"Upstream Oil and Gas Technology","volume":"5 ","pages":"Article 100011"},"PeriodicalIF":2.6000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.upstre.2020.100011","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Upstream Oil and Gas Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666260420300116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1

Abstract

The motivation is eliminating the uncertainties in predicting reservoir performance, and reducing the errors in the reservoir characterization resulted by neglecting the impact of non-Darcy flow. In this study, an analytical multi-linear flow regimes model has been developed for pressure distribution in hydraulically fractured reservoirs and modified for the existence of non-Darcy flow by introducing the rate-dependent skin factor to the flow equations. This model is solved for different impacts of non-Darcy flow by assuming a constant flow rate and different non-Darcy flow coefficients. The effects of different cross-section areas of flow inside hydraulic fractures on the non-Darcy flow coefficient are considered in this study as well as different fracture conductivities. Reservoir configurations and petrophysical properties are also considered in calculating pressure distributions. Analytical models for hydraulic fracture linear flow regime, bi-linear flow regime, and boundary-dominated flow regime are developed based on pressure responses for different non-Darcy flow impact. Analytical models for transient and pseudo-steady state productivity indices are presented in this paper to demonstrate the impact of non-Darcy flow on these indices. The results of this study showed there are considerable effects of non-Darcy flow on reservoir performance and developed analytical mathematical models for recognized flow regimes which observed during reservoir production period. Additionally, results illustrated the reservoir configurations and petrophysical properties may not have significant contribution in developing non-Darcy flow. Finally, the productivity index has been sharply declined for later production time. Meanwhile, it is constant for high rate-dependent skin factors at the early time of production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑不同裂缝几何形状和储层特征的水力裂缝非达西渗流综合方法
其动机是消除预测储层动态的不确定性,减少由于忽略非达西流动的影响而导致的储层表征误差。在本研究中,建立了水力压裂油藏压力分布的解析型多线性流动模型,并通过在流动方程中引入与速率相关的表皮因子来修正非达西流动的存在。该模型通过假设一定的流量和不同的非达西流系数来求解不同的非达西流影响。本研究考虑了水力裂缝内不同流动截面面积对非达西流动系数的影响以及不同的裂缝导流性。在计算压力分布时还考虑了储层结构和岩石物理性质。基于不同非达西流冲击的压力响应,建立了水力裂缝线性流型、双线性流型和边界主导流型的分析模型。本文提出了暂态和拟稳态产能指标的分析模型,以证明非达西流动对这些指标的影响。研究结果表明,非达西流动对储层性能有相当大的影响,并为油藏生产期间观察到的公认流动模式建立了分析数学模型。此外,研究结果表明,储层结构和岩石物性对非达西流的开发可能没有太大的贡献。最后,生产后期的生产率指数急剧下降。同时,在生产初期,高速率依赖的表皮因子是恒定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of pump jacks with theories and experiments Well perforating—More than reservoir connection A new method for predicting casing wear in highly deviated wells using mud logging data Experimental investigation of bypassed-oil recovery in tight reservoir rock using a two-step CO2 soaking strategy: Effects of fracture geometry A Review of Modern Approaches of Digitalization in Oil and Gas Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1