Musarrat Husain Warsi, Sharmistha Mohapatra, Mohammed Asfer, Mohammad Yusuf, Abuzer Ali, Mohammad Akhlaquer Rahman, Amena Ali, Abdul Qadir, Gaurav K Jain
{"title":"Development and Antibacterial Investigation of Linezolid-Loaded SPIONs and HPLC Method Development for Quantitative Analysis of Linezolid.","authors":"Musarrat Husain Warsi, Sharmistha Mohapatra, Mohammed Asfer, Mohammad Yusuf, Abuzer Ali, Mohammad Akhlaquer Rahman, Amena Ali, Abdul Qadir, Gaurav K Jain","doi":"10.1093/jaoacint/qsad071","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Linezolid (LNZ) is extremely prone to resistance. The development of resistance to LNZ should be taken into consideration when selecting this drug as a therapeutic option. It is well established that reactive oxygen species (ROS) generated by iron oxide nanoparticles (MNPs) could kill the infecting bacteria. So, we hypothesized the synergistic antibacterial effect of iron oxide nanoparticles and LNZ.</p><p><strong>Objective: </strong>To study the release and antibacterial effects of LNZ-loaded superparamagnetic iron oxide nanoparticles (SPIONs) on Staphylococcus aureus and Streptococcus pneumoniae.</p><p><strong>Method: </strong>Ferrofluid containing SPIONs was synthesized via chemical co-precipitation method and stabilized by sodium lauryl sulphate (SLS). SPIONs were then loaded with LNZ and characterized for particle size, FT-IR, XRD, and entrapment efficiency. Further antibacterial activity of SPIONs and LNZ-loaded SPIONs was investigated. For the in vitro release findings, HPLC analytical method development and validation were performed.</p><p><strong>Results: </strong>Isolation of LNZ was accomplished on a C-18 column with methanol-TBHS (tetra butyl ammonium hydrogen sulphate, 50:50, v/v). The eluate was monitored at 247 nm with a retention time of 4.175 min. The MNP's DLS measurement revealed monodispersed particles with an average size of 16.81 ± 1.07 nm and PDI 0.176 ± 0.012. In optimized formulation, 25 ± 1.75% (w/w) of the drug was found to be entrapped. XRD revealed uniform coating of oleic acid covering the entire magnetic particles' surface with no change in its crystallinity. An effective antimicrobial activity was observed at the lowered dose of drug.</p><p><strong>Conclusions: </strong>A robust HPLC method was developed to quantify the LNZ in MNPs, and outcomes showed that the reduced dose of LNZ incorporated in SPIONs was able to show similar activity as the marketed product.</p><p><strong>Highlights: </strong>Successfully reduction of the dose of LNZ was established with the aid of biocompatible MNPs to attain the equivalent antibacterial activity.</p>","PeriodicalId":15003,"journal":{"name":"Journal of AOAC International","volume":"106 5","pages":"1180-1189"},"PeriodicalIF":1.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AOAC International","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jaoacint/qsad071","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Linezolid (LNZ) is extremely prone to resistance. The development of resistance to LNZ should be taken into consideration when selecting this drug as a therapeutic option. It is well established that reactive oxygen species (ROS) generated by iron oxide nanoparticles (MNPs) could kill the infecting bacteria. So, we hypothesized the synergistic antibacterial effect of iron oxide nanoparticles and LNZ.
Objective: To study the release and antibacterial effects of LNZ-loaded superparamagnetic iron oxide nanoparticles (SPIONs) on Staphylococcus aureus and Streptococcus pneumoniae.
Method: Ferrofluid containing SPIONs was synthesized via chemical co-precipitation method and stabilized by sodium lauryl sulphate (SLS). SPIONs were then loaded with LNZ and characterized for particle size, FT-IR, XRD, and entrapment efficiency. Further antibacterial activity of SPIONs and LNZ-loaded SPIONs was investigated. For the in vitro release findings, HPLC analytical method development and validation were performed.
Results: Isolation of LNZ was accomplished on a C-18 column with methanol-TBHS (tetra butyl ammonium hydrogen sulphate, 50:50, v/v). The eluate was monitored at 247 nm with a retention time of 4.175 min. The MNP's DLS measurement revealed monodispersed particles with an average size of 16.81 ± 1.07 nm and PDI 0.176 ± 0.012. In optimized formulation, 25 ± 1.75% (w/w) of the drug was found to be entrapped. XRD revealed uniform coating of oleic acid covering the entire magnetic particles' surface with no change in its crystallinity. An effective antimicrobial activity was observed at the lowered dose of drug.
Conclusions: A robust HPLC method was developed to quantify the LNZ in MNPs, and outcomes showed that the reduced dose of LNZ incorporated in SPIONs was able to show similar activity as the marketed product.
Highlights: Successfully reduction of the dose of LNZ was established with the aid of biocompatible MNPs to attain the equivalent antibacterial activity.
期刊介绍:
The Journal of AOAC INTERNATIONAL publishes the latest in basic and applied research in analytical sciences related to foods, drugs, agriculture, the environment, and more. The Journal is the method researchers'' forum for exchanging information and keeping informed of new technology and techniques pertinent to regulatory agencies and regulated industries.