{"title":"Estimating the Efficiency Gain of Covariate-Adjusted Analyses in Future Clinical Trials Using External Data.","authors":"Xiudi Li, Sijia Li, Alex Luedtke","doi":"10.1093/jrsssb/qkad007","DOIUrl":null,"url":null,"abstract":"<p><p>We present a framework for using existing external data to identify and estimate the relative efficiency of a covariate-adjusted estimator compared to an unadjusted estimator in a future randomized trial. Under conditions, these relative efficiencies approximate the ratio of sample sizes needed to achieve a desired power. We develop semiparametrically efficient estimators of the relative efficiencies for several treatment effect estimands of interest with either fully or partially observed outcomes, allowing for the application of flexible statistical learning tools to estimate the nuisance functions. We propose an analytic Wald-type confidence interval and a double bootstrap scheme for statistical inference. We demonstrate the performance of the proposed methods through simulation studies and apply these methods to estimate the efficiency gain of covariate adjustment in Covid-19 therapeutic trials.</p>","PeriodicalId":49982,"journal":{"name":"Journal of the Royal Statistical Society Series B-Statistical Methodology","volume":"85 2","pages":"356-377"},"PeriodicalIF":3.1000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10433828/pdf/nihms-1923273.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society Series B-Statistical Methodology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssb/qkad007","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a framework for using existing external data to identify and estimate the relative efficiency of a covariate-adjusted estimator compared to an unadjusted estimator in a future randomized trial. Under conditions, these relative efficiencies approximate the ratio of sample sizes needed to achieve a desired power. We develop semiparametrically efficient estimators of the relative efficiencies for several treatment effect estimands of interest with either fully or partially observed outcomes, allowing for the application of flexible statistical learning tools to estimate the nuisance functions. We propose an analytic Wald-type confidence interval and a double bootstrap scheme for statistical inference. We demonstrate the performance of the proposed methods through simulation studies and apply these methods to estimate the efficiency gain of covariate adjustment in Covid-19 therapeutic trials.
期刊介绍:
Series B (Statistical Methodology) aims to publish high quality papers on the methodological aspects of statistics and data science more broadly. The objective of papers should be to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods; any mathematical theory should be directed towards these aims. The kinds of contribution considered include descriptions of new methods of collecting or analysing data, with the underlying theory, an indication of the scope of application and preferably a real example. Also considered are comparisons, critical evaluations and new applications of existing methods, contributions to probability theory which have a clear practical bearing (including the formulation and analysis of stochastic models), statistical computation or simulation where original methodology is involved and original contributions to the foundations of statistical science. Reviews of methodological techniques are also considered. A paper, even if correct and well presented, is likely to be rejected if it only presents straightforward special cases of previously published work, if it is of mathematical interest only, if it is too long in relation to the importance of the new material that it contains or if it is dominated by computations or simulations of a routine nature.