Chromosome-level genome assembly of a high-altitude-adapted frog (Rana kukunoris) from the Tibetan plateau provides insight into amphibian genome evolution and adaptation.

IF 2.6 2区 生物学 Q1 ZOOLOGY Frontiers in Zoology Pub Date : 2023-01-06 DOI:10.1186/s12983-022-00482-9
Wei Chen, Hongzhou Chen, Jiahong Liao, Min Tang, Haifen Qin, Zhenkun Zhao, Xueyan Liu, Yanfang Wu, Lichun Jiang, Lixia Zhang, Bohao Fang, Xueyun Feng, Baowei Zhang, Kerry Reid, Juha Merilä
{"title":"Chromosome-level genome assembly of a high-altitude-adapted frog (Rana kukunoris) from the Tibetan plateau provides insight into amphibian genome evolution and adaptation.","authors":"Wei Chen, Hongzhou Chen, Jiahong Liao, Min Tang, Haifen Qin, Zhenkun Zhao, Xueyan Liu, Yanfang Wu, Lichun Jiang, Lixia Zhang, Bohao Fang, Xueyun Feng, Baowei Zhang, Kerry Reid, Juha Merilä","doi":"10.1186/s12983-022-00482-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The high-altitude-adapted frog Rana kukunoris, occurring on the Tibetan plateau, is an excellent model to study life history evolution and adaptation to harsh high-altitude environments. However, genomic resources for this species are still underdeveloped constraining attempts to investigate the underpinnings of adaptation.</p><p><strong>Results: </strong>The R. kukunoris genome was assembled to a size of 4.83 Gb and the contig N50 was 1.80 Mb. The 6555 contigs were clustered and ordered into 12 pseudo-chromosomes covering ~ 93.07% of the assembled genome. In total, 32,304 genes were functionally annotated. Synteny analysis between the genomes of R. kukunoris and a low latitude species Rana temporaria showed a high degree of chromosome level synteny with one fusion event between chr11 and chr13 forming pseudo-chromosome 11 in R. kukunoris. Characterization of features of the R. kukunoris genome identified that 61.5% consisted of transposable elements and expansions of gene families related to cell nucleus structure and taste sense were identified. Ninety-five single-copy orthologous genes were identified as being under positive selection and had functions associated with the positive regulation of proteins in the catabolic process and negative regulation of developmental growth. These gene family expansions and positively selected genes indicate regions for further interrogation to understand adaptation to high altitude.</p><p><strong>Conclusions: </strong>Here, we reported a high-quality chromosome-level genome assembly of a high-altitude amphibian species using a combination of Illumina, PacBio and Hi-C sequencing technologies. This genome assembly provides a valuable resource for subsequent research on R. kukunoris genomics and amphibian genome evolution in general.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9817415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-022-00482-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The high-altitude-adapted frog Rana kukunoris, occurring on the Tibetan plateau, is an excellent model to study life history evolution and adaptation to harsh high-altitude environments. However, genomic resources for this species are still underdeveloped constraining attempts to investigate the underpinnings of adaptation.

Results: The R. kukunoris genome was assembled to a size of 4.83 Gb and the contig N50 was 1.80 Mb. The 6555 contigs were clustered and ordered into 12 pseudo-chromosomes covering ~ 93.07% of the assembled genome. In total, 32,304 genes were functionally annotated. Synteny analysis between the genomes of R. kukunoris and a low latitude species Rana temporaria showed a high degree of chromosome level synteny with one fusion event between chr11 and chr13 forming pseudo-chromosome 11 in R. kukunoris. Characterization of features of the R. kukunoris genome identified that 61.5% consisted of transposable elements and expansions of gene families related to cell nucleus structure and taste sense were identified. Ninety-five single-copy orthologous genes were identified as being under positive selection and had functions associated with the positive regulation of proteins in the catabolic process and negative regulation of developmental growth. These gene family expansions and positively selected genes indicate regions for further interrogation to understand adaptation to high altitude.

Conclusions: Here, we reported a high-quality chromosome-level genome assembly of a high-altitude amphibian species using a combination of Illumina, PacBio and Hi-C sequencing technologies. This genome assembly provides a valuable resource for subsequent research on R. kukunoris genomics and amphibian genome evolution in general.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
青藏高原高海拔适应性蛙类(Rana kukunoris)染色体组水平的基因组组装为两栖动物基因组进化和适应提供了洞察力。
背景:青藏高原的高海拔适应性蛙类Rana kukunoris是研究生活史进化和对严酷高海拔环境适应性的极佳模型。然而,该物种的基因组资源仍不发达,制约了研究其适应性基础的尝试:Kukunoris 基因组的组装大小为 4.83 Gb,等位基因 N50 为 1.80 Mb。6555 个等位基因被聚类排序为 12 个假染色体,覆盖了约 93.07% 的已组装基因组。总共有 32 304 个基因得到了功能注释。库库诺里斯蛙基因组与低纬度物种Rana temporaria基因组之间的同源分析表明,库库诺里斯蛙的染色体水平具有高度的同源性,chr11和chr13之间的一次融合形成了假染色体11。对 R. kukunoris 基因组特征的分析表明,61.5% 的基因组由转座元件组成,并发现了与细胞核结构和味觉有关的基因家族的扩展。经鉴定,有 95 个单拷贝同源基因处于正选择状态,其功能与分解过程中蛋白质的正调控和发育生长的负调控有关。这些基因家族的扩展和正选择基因指明了需要进一步研究的区域,以了解对高海拔的适应性:在此,我们结合 Illumina、PacBio 和 Hi-C 测序技术,报道了一种高海拔两栖动物的高质量染色体组基因组组装。该基因组组装为 R. kukunoris 基因组学和两栖动物基因组进化的后续研究提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.90
自引率
0.00%
发文量
29
审稿时长
>12 weeks
期刊介绍: Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life. As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem. Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost. The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.
期刊最新文献
Complex interplay between the microfluidic and optical properties of Hoplia sp. beetles Massive citizen science sampling and integrated taxonomic approach unravel Danish cryptogam-dwelling tardigrade fauna Male reproductive system of the deep-sea acorn worm Quatuoralisia malakhovi (Hemichordata, Enteropneusta, Torquaratoridae) from the Bering Sea Are toe fringes important for lizard burying in highly mobile sand? Human activities reshape the spatial overlap between North Chinese leopard and its wild ungulate prey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1