{"title":"Hematology 2022-what is complete HLA match in 2022?","authors":"Stephen R Spellman","doi":"10.1182/hematology.2022000326","DOIUrl":null,"url":null,"abstract":"<p><p>Allogeneic hematopoietic cell transplantation (alloHCT) often represents the only curative treatment for various malignant and nonmalignant disorders. Initially, the only suitable donors were considered human leukocyte antigen (HLA)-matched or partially matched relatives. The founding of international unrelated donor and umbilical cord blood registries expanded unrelated donor options and access for patients. In the absence of a matched sibling donor (MSD) with 13% to 51% availability, the current consensus recommends use of a matched unrelated donor (MUD) at HLA-A, B, C, and DRB1 with consideration of matching at HLA-DPB1 and -DQB1. MUD donor availability (donor willing and available to donate) ranges from 29% to 78% with African American patients on the lower end and white non-Hispanic patients with the highest likelihood of a match. Recent studies comparing donor to no-donor treatment options in malignant disease consistently point to substantially better outcomes following alloHCT. In the absence of an MSD or MUD, alternative donor choices turn to haploidentical related (Haplo), mismatched unrelated donor (MMUD), and umbilical cord blood (UCB). Novel strategies for alloHCT, including the use of posttransplant cyclophosphamide-based graft vs host disease prophylaxis, have expanded the safety and effectiveness of transplant procedures across HLA barriers using Haplo and MMUD. The less restrictive matching requirements for UCB transplant are well documented and allow for transplant across multiply mismatched HLA alleles. When all donor options are considered, nearly all patients have an available donor. Here we discuss the likelihood of donor availability, complete HLA match by available donor type, and current controversies warranting future research.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"83-89"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9821192/pdf/hem.2022000326.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hematology. American Society of Hematology. Education Program","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1182/hematology.2022000326","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 6
Abstract
Allogeneic hematopoietic cell transplantation (alloHCT) often represents the only curative treatment for various malignant and nonmalignant disorders. Initially, the only suitable donors were considered human leukocyte antigen (HLA)-matched or partially matched relatives. The founding of international unrelated donor and umbilical cord blood registries expanded unrelated donor options and access for patients. In the absence of a matched sibling donor (MSD) with 13% to 51% availability, the current consensus recommends use of a matched unrelated donor (MUD) at HLA-A, B, C, and DRB1 with consideration of matching at HLA-DPB1 and -DQB1. MUD donor availability (donor willing and available to donate) ranges from 29% to 78% with African American patients on the lower end and white non-Hispanic patients with the highest likelihood of a match. Recent studies comparing donor to no-donor treatment options in malignant disease consistently point to substantially better outcomes following alloHCT. In the absence of an MSD or MUD, alternative donor choices turn to haploidentical related (Haplo), mismatched unrelated donor (MMUD), and umbilical cord blood (UCB). Novel strategies for alloHCT, including the use of posttransplant cyclophosphamide-based graft vs host disease prophylaxis, have expanded the safety and effectiveness of transplant procedures across HLA barriers using Haplo and MMUD. The less restrictive matching requirements for UCB transplant are well documented and allow for transplant across multiply mismatched HLA alleles. When all donor options are considered, nearly all patients have an available donor. Here we discuss the likelihood of donor availability, complete HLA match by available donor type, and current controversies warranting future research.