A note on the use of rank-ordered logit models for ordered response categories

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS British Journal of Mathematical & Statistical Psychology Pub Date : 2022-11-03 DOI:10.1111/bmsp.12292
Timothy R. Johnson
{"title":"A note on the use of rank-ordered logit models for ordered response categories","authors":"Timothy R. Johnson","doi":"10.1111/bmsp.12292","DOIUrl":null,"url":null,"abstract":"<p>Models for rankings have been shown to produce more efficient estimators than comparable models for first/top choices. The discussions and applications of these models typically only consider unordered alternatives. But these models can be usefully adapted to the case where a respondent ranks a set of ordered alternatives that are ordered response categories. This paper proposes eliciting a rank order that is consistent with the ordering of the response categories, and then modelling the observed rankings using a variant of the rank ordered logit model where the distribution of rankings has been truncated to the set of admissible rankings. This results in lower standard errors in comparison to when only a single top category is selected by the respondents. And the restrictions on the set of admissible rankings reduces the number of decisions needed to be made by respondents in comparison to ranking a set of unordered alternatives. Simulation studies and application examples featuring models based on a stereotype regression model and a rating scale item response model are provided to demonstrate the utility of this approach.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/bmsp.12292","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Models for rankings have been shown to produce more efficient estimators than comparable models for first/top choices. The discussions and applications of these models typically only consider unordered alternatives. But these models can be usefully adapted to the case where a respondent ranks a set of ordered alternatives that are ordered response categories. This paper proposes eliciting a rank order that is consistent with the ordering of the response categories, and then modelling the observed rankings using a variant of the rank ordered logit model where the distribution of rankings has been truncated to the set of admissible rankings. This results in lower standard errors in comparison to when only a single top category is selected by the respondents. And the restrictions on the set of admissible rankings reduces the number of decisions needed to be made by respondents in comparison to ranking a set of unordered alternatives. Simulation studies and application examples featuring models based on a stereotype regression model and a rating scale item response model are provided to demonstrate the utility of this approach.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于对有序响应类别使用秩有序logit模型的说明
排名模型已被证明比第一/第一选择的可比模型产生更有效的估计器。这些模型的讨论和应用通常只考虑无序的替代方案。但是,这些模型可以有效地适应这样的情况,即被调查者对一组有序的备选方案进行排序,这些备选方案是有序的回答类别。本文提出了一个与响应类别的排序一致的排序顺序,然后使用排序有序logit模型的一种变体对观察到的排名进行建模,其中排名的分布已被截断为可接受的排名集。与被调查者只选择一个顶级类别相比,这导致了更低的标准误差。与对一组无序选择进行排序相比,对可接受排序集的限制减少了受访者需要做出的决策数量。以刻板印象回归模型和评等量表项目反应模型为模型的模拟研究和应用实例,证明了该方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
期刊最新文献
Investigating heterogeneity in IRTree models for multiple response processes with score-based partitioning. A convexity-constrained parameterization of the random effects generalized partial credit model. Handling missing data in variational autoencoder based item response theory. Maximal point-polyserial correlation for non-normal random distributions. Perturbation graphs, invariant causal prediction and causal relations in psychology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1