Integer programming (IP) is an extension of linear programming (LP) whereby the goal is to determine values for a set of decision variables (some or all of which have integer restrictions) so as to maximize or minimize a linear objective function of the variables subject to a set of linear constraints involving the variables. Although the psychological literature is replete with applications of multivariate statistics, implementations of mathematical modelling methods such as IP are comparatively far fewer. Nevertheless, over the decades, there have been a variety of important applications and the vast majority of these fall within the IP rather than the LP category. In this paper, we offer a brief overview of the history of IP methodology. We subsequently review some domains where IP has been gainfully applied in psychology, such as test assembly, cluster analysis and classification and seriation and unidimensional scaling. An illustrative example of using IP to cluster respondents measured on items pertaining to substance abuse disorder is provided. Finally, we identify areas where IP might be applied in emerging areas of psychology, such as in the domain of network psychometrics.
{"title":"Integer programming in psychology: A review and directions for future research.","authors":"Michael Brusco, Douglas Steinley, Ashley L Watts","doi":"10.1111/bmsp.12386","DOIUrl":"https://doi.org/10.1111/bmsp.12386","url":null,"abstract":"<p><p>Integer programming (IP) is an extension of linear programming (LP) whereby the goal is to determine values for a set of decision variables (some or all of which have integer restrictions) so as to maximize or minimize a linear objective function of the variables subject to a set of linear constraints involving the variables. Although the psychological literature is replete with applications of multivariate statistics, implementations of mathematical modelling methods such as IP are comparatively far fewer. Nevertheless, over the decades, there have been a variety of important applications and the vast majority of these fall within the IP rather than the LP category. In this paper, we offer a brief overview of the history of IP methodology. We subsequently review some domains where IP has been gainfully applied in psychology, such as test assembly, cluster analysis and classification and seriation and unidimensional scaling. An illustrative example of using IP to cluster respondents measured on items pertaining to substance abuse disorder is provided. Finally, we identify areas where IP might be applied in emerging areas of psychology, such as in the domain of network psychometrics.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143517464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zichu Liu, Shiyu Wang, Houping Xiao, Shumei Zhang, Tao Qiu
Understanding students' learning trajectories is crucial for educators to effectively monitor and enhance progress. With the rise of computer-based testing, researchers now have access to rich datasets that provide deeper insights into student performance. This study introduces a general dynamic learning model framework that integrates response accuracy and response times to capture different test-taking behaviors and estimate learning trajectories related to polytomous attributes over time. A Bayesian estimation method is proposed to estimate model parameters. Rigorous validation through simulation studies confirms the effectiveness of the MCMC algorithm in parameter recovery and highlights the model's utility in understanding learning trajectories and detecting different test-taking behaviors in a learning environment. Applied to real data, the model demonstrates practical value in educational settings. Overall, this comprehensive and validated model offers educators and researchers nuanced insights into student learning progress and behavioral dynamics.
{"title":"A general dynamic learning model framework for cognitive diagnosis.","authors":"Zichu Liu, Shiyu Wang, Houping Xiao, Shumei Zhang, Tao Qiu","doi":"10.1111/bmsp.12384","DOIUrl":"https://doi.org/10.1111/bmsp.12384","url":null,"abstract":"<p><p>Understanding students' learning trajectories is crucial for educators to effectively monitor and enhance progress. With the rise of computer-based testing, researchers now have access to rich datasets that provide deeper insights into student performance. This study introduces a general dynamic learning model framework that integrates response accuracy and response times to capture different test-taking behaviors and estimate learning trajectories related to polytomous attributes over time. A Bayesian estimation method is proposed to estimate model parameters. Rigorous validation through simulation studies confirms the effectiveness of the MCMC algorithm in parameter recovery and highlights the model's utility in understanding learning trajectories and detecting different test-taking behaviors in a learning environment. Applied to real data, the model demonstrates practical value in educational settings. Overall, this comprehensive and validated model offers educators and researchers nuanced insights into student learning progress and behavioral dynamics.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to \"A new Q-matrix validation method based on signal detection theory\".","authors":"","doi":"10.1111/bmsp.12385","DOIUrl":"https://doi.org/10.1111/bmsp.12385","url":null,"abstract":"","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nowadays, multidimensional data are often available from educational testing. One natural issue is to identify whether more dimensional data are useful in fitting the item response data. To address this important issue, we develop a new decomposition of Widely Applicable Information Criterion (WAIC) via the posterior predictive ordinate (PPO) under the joint model for the response, response time and two additional educational testing scores. Based on this decomposition, a new model assessment criterion is then proposed, which allows us to determine which of the response time and two additional scores are most useful in fitting the response data and whether other dimensional data are further needed given that one of these dimensional data is already included in the joint model with the response data. In addition, an efficient Monte Carlo method is developed to compute PPO. An extensive simulation study is conducted to examine the empirical performance of the proposed joint model and the model assessment criterion in the psychological setting. The proposed methodology is further applied to an analysis of a real dataset from a computerized educational assessment program.
{"title":"Decomposition of WAIC for assessing the information gain with application to educational testing.","authors":"Fang Liu, Ming-Hui Chen, Xiaojing Wang, Roeland Hancock","doi":"10.1111/bmsp.12383","DOIUrl":"https://doi.org/10.1111/bmsp.12383","url":null,"abstract":"<p><p>Nowadays, multidimensional data are often available from educational testing. One natural issue is to identify whether more dimensional data are useful in fitting the item response data. To address this important issue, we develop a new decomposition of Widely Applicable Information Criterion (WAIC) via the posterior predictive ordinate (PPO) under the joint model for the response, response time and two additional educational testing scores. Based on this decomposition, a new model assessment criterion is then proposed, which allows us to determine which of the response time and two additional scores are most useful in fitting the response data and whether other dimensional data are further needed given that one of these dimensional data is already included in the joint model with the response data. In addition, an efficient Monte Carlo method is developed to compute PPO. An extensive simulation study is conducted to examine the empirical performance of the proposed joint model and the model assessment criterion in the psychological setting. The proposed methodology is further applied to an analysis of a real dataset from a computerized educational assessment program.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143470029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Item response theory models are commonly adopted in educational assessment and psychological measurement. Such models need to be modified to accommodate practical situations when statistical sampling assumptions are violated. Omission is a common phenomenon in educational testing. In modern computer-based testing, we have not only examinees' responses but also their response times. This paper utilizes response time and develops a joint model of responses and response times. The new approach is analogous to those developed in survival analysis for dealing with right-censored data. In particular, a key ingredient is the introduction of the omission time (OT), which corresponds to the censoring time in survival analysis. By competing risk formulation, the proposed method provides an alternative narrative to how an item becomes answered versus omitted, depending on the competing relationship of response time and OT, so that the likelihood function can be constructed properly. The maximum likelihood estimator can be computed via the expectation-maximization algorithm. Simulation studies were conducted to evaluate the performance of the proposed method and its robustness against various mis-specifications. The method was applied to a dataset from the PISA 2015 Science Test.
{"title":"Jointly modeling responses and omitted items by a competing risk model: A survival analysis approach.","authors":"Jinxin Guo, Xin Xu, Guanhua Fang, Zhiliang Ying, Susu Zhang","doi":"10.1111/bmsp.12382","DOIUrl":"https://doi.org/10.1111/bmsp.12382","url":null,"abstract":"<p><p>Item response theory models are commonly adopted in educational assessment and psychological measurement. Such models need to be modified to accommodate practical situations when statistical sampling assumptions are violated. Omission is a common phenomenon in educational testing. In modern computer-based testing, we have not only examinees' responses but also their response times. This paper utilizes response time and develops a joint model of responses and response times. The new approach is analogous to those developed in survival analysis for dealing with right-censored data. In particular, a key ingredient is the introduction of the omission time (OT), which corresponds to the censoring time in survival analysis. By competing risk formulation, the proposed method provides an alternative narrative to how an item becomes answered versus omitted, depending on the competing relationship of response time and OT, so that the likelihood function can be constructed properly. The maximum likelihood estimator can be computed via the expectation-maximization algorithm. Simulation studies were conducted to evaluate the performance of the proposed method and its robustness against various mis-specifications. The method was applied to a dataset from the PISA 2015 Science Test.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent technological advancements have enabled the collection of intensive longitudinal data (ILD), consisting of repeated measurements from the same individual. The threshold autoregressive (TAR) model is often used to capture the dynamic outcome process in ILD, with autoregressive parameters varying based on outcome variable levels. For ILD from multiple individuals, multilevel TAR (ML-TAR) models have been proposed, with Bayesian approaches typically used for parameter estimation. However, fitting ML-TAR models can be computationally challenging. This study introduces a mean-field variational Bayes (MFVB) algorithm as an alternative to traditional Bayesian inference. By optimizing to approximate posterior densities, variational Bayes aims to find the best approximation within a defined set of distributions. Simulation results demonstrate that our MFVB algorithm is significantly faster than the standard Markov chain Monte Carlo (MCMC) approach. Moreover, increasing the number of individuals or time points enhances the accuracy of the parameter estimates using MFVB, suggesting that sufficient data are crucial for accurate estimation in complex models like ML-TAR models. When applied to real-world data, the MFVB algorithm was significantly more efficient than MCMC and maintained similar accuracy. Thus, the MFVB algorithm is a faster and more consistent alternative to MCMC for large-scale inference in ILD models.
{"title":"Efficient and accurate variational inference for multilevel threshold autoregressive models in intensive longitudinal data.","authors":"Azizur Rahman, Depeng Jiang, Lisa M Lix","doi":"10.1111/bmsp.12381","DOIUrl":"https://doi.org/10.1111/bmsp.12381","url":null,"abstract":"<p><p>Recent technological advancements have enabled the collection of intensive longitudinal data (ILD), consisting of repeated measurements from the same individual. The threshold autoregressive (TAR) model is often used to capture the dynamic outcome process in ILD, with autoregressive parameters varying based on outcome variable levels. For ILD from multiple individuals, multilevel TAR (ML-TAR) models have been proposed, with Bayesian approaches typically used for parameter estimation. However, fitting ML-TAR models can be computationally challenging. This study introduces a mean-field variational Bayes (MFVB) algorithm as an alternative to traditional Bayesian inference. By optimizing to approximate posterior densities, variational Bayes aims to find the best approximation within a defined set of distributions. Simulation results demonstrate that our MFVB algorithm is significantly faster than the standard Markov chain Monte Carlo (MCMC) approach. Moreover, increasing the number of individuals or time points enhances the accuracy of the parameter estimates using MFVB, suggesting that sufficient data are crucial for accurate estimation in complex models like ML-TAR models. When applied to real-world data, the MFVB algorithm was significantly more efficient than MCMC and maintained similar accuracy. Thus, the MFVB algorithm is a faster and more consistent alternative to MCMC for large-scale inference in ILD models.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143016865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisa Frutos-Bernal, Eva Ceulemans, Purificación Galindo-Villardón, Tom F Wilderjans
In various areas of science, researchers try to gain insight into important processes by jointly analysing different datasets containing information regarding common aspects of these processes. For example, to explain individual differences in personality, researchers collect, for the same set of persons, data regarding behavioural signatures (i.e., the reaction profile of a person across different situations), on the one hand, and traits or dispositions, on the other hand. To uncover the processes underlying such coupled data, to all N-way -mode data blocks simultaneously a global model is fitted, in which each data block is represented by an -way -mode decomposition model (e.g., principal component analysis [PCA], Parafac, Tucker3) and the parameters underlying the common mode are required to be the same for all data blocks this mode belongs to. To estimate the parameters underlying the common mode, a simultaneous strategy is used that pools the information present in all data blocks (i.e., data fusion). In this paper, we propose the T3-PCA model, which represents three- and two-way data with Tucker3 and PCA respectively. This model is less restrictive than the already proposed LMPCA model in which the three-way data block is decomposed according to a Parafac model. To estimate the T3-PCA model parameters, an alternating least-squares algorithm is proposed. The superior performance of the simultaneous T3-PCA strategy over a sequential strategy (i.e., estimating common parameters using information from the three-way data block only) is demonstrated in an extensive simulation study and an application to empirical coupled anxiety data.
在不同的科学领域,研究人员试图通过联合分析包含这些过程的共同方面的信息的不同数据集来深入了解重要的过程。例如,为了解释个性的个体差异,研究人员收集了同一组人的行为特征数据(即,一个人在不同情况下的反应概况),以及另一方面的特征或性格。为了揭示这些耦合数据背后的过程,以所有N-way N $$ N $$ -mode数据块同时拟合一个全局模型,其中每个数据块用N表示 $$ N $$ -way N $$ N $$ -模态分解模型(如主成分分析[PCA]、Parafac、Tucker3)和公共模态的底层参数对于该模态所属的所有数据块都要求相同。为了估计公共模式下的参数,使用了一种同步策略,将所有数据块中的信息集中在一起(即数据融合)。本文提出了T3-PCA模型,分别用Tucker3和PCA表示三向和双向数据。该模型比已经提出的LMPCA模型约束更少,在LMPCA模型中,根据Parafac模型对三向数据块进行分解。为了估计T3-PCA模型参数,提出了一种交替最小二乘算法。在广泛的模拟研究和经验耦合焦虑数据的应用中,证明了同步T3-PCA策略优于顺序策略(即仅使用来自三方数据块的信息估计共同参数)。
{"title":"Data fusion by T3-PCA: A global model for the simultaneous analysis of coupled three-way and two-way real-valued data.","authors":"Elisa Frutos-Bernal, Eva Ceulemans, Purificación Galindo-Villardón, Tom F Wilderjans","doi":"10.1111/bmsp.12372","DOIUrl":"https://doi.org/10.1111/bmsp.12372","url":null,"abstract":"<p><p>In various areas of science, researchers try to gain insight into important processes by jointly analysing different datasets containing information regarding common aspects of these processes. For example, to explain individual differences in personality, researchers collect, for the same set of persons, data regarding behavioural signatures (i.e., the reaction profile of a person across different situations), on the one hand, and traits or dispositions, on the other hand. To uncover the processes underlying such coupled data, to all N-way <math> <semantics><mrow><mi>N</mi></mrow> <annotation>$$ N $$</annotation></semantics> </math> -mode data blocks simultaneously a global model is fitted, in which each data block is represented by an <math> <semantics><mrow><mi>N</mi></mrow> <annotation>$$ N $$</annotation></semantics> </math> -way <math> <semantics><mrow><mi>N</mi></mrow> <annotation>$$ N $$</annotation></semantics> </math> -mode decomposition model (e.g., principal component analysis [PCA], Parafac, Tucker3) and the parameters underlying the common mode are required to be the same for all data blocks this mode belongs to. To estimate the parameters underlying the common mode, a simultaneous strategy is used that pools the information present in all data blocks (i.e., data fusion). In this paper, we propose the T3-PCA model, which represents three- and two-way data with Tucker3 and PCA respectively. This model is less restrictive than the already proposed LMPCA model in which the three-way data block is decomposed according to a Parafac model. To estimate the T3-PCA model parameters, an alternating least-squares algorithm is proposed. The superior performance of the simultaneous T3-PCA strategy over a sequential strategy (i.e., estimating common parameters using information from the three-way data block only) is demonstrated in an extensive simulation study and an application to empirical coupled anxiety data.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper provides a literature review of assessment of fit of item response theory models. Various types of fit procedures for item response theory models are reviewed, with a focus on their advantages and disadvantages. Real data examples are used to demonstrate some of the fit procedures. Recommendations are provided for researchers and practitioners who are interested in assessing the fit of item response theory models.
{"title":"Assessment of fit of item response theory models: A critical review of the status quo and some future directions.","authors":"Sandip Sinharay, Scott Monroe","doi":"10.1111/bmsp.12378","DOIUrl":"https://doi.org/10.1111/bmsp.12378","url":null,"abstract":"<p><p>This paper provides a literature review of assessment of fit of item response theory models. Various types of fit procedures for item response theory models are reviewed, with a focus on their advantages and disadvantages. Real data examples are used to demonstrate some of the fit procedures. Recommendations are provided for researchers and practitioners who are interested in assessing the fit of item response theory models.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper introduces the generalized Hausman test as a novel method for detecting the non-normality of the latent variable distribution of the unidimensional latent trait model for binary data. The test utilizes the pairwise maximum likelihood estimator for the parameters of the latent trait model, which assumes normality of the latent variable, and the maximum likelihood estimator obtained under a semi-non-parametric framework, allowing for a more flexible distribution of the latent variable. The performance of the generalized Hausman test is evaluated through a simulation study and compared with other test statistics available in the literature for testing latent variable distribution fit and an overall goodness-of-fit test statistic. Additionally, three information criteria are used to select the best-fitted model. The simulation results show that the generalized Hausman test outperforms the other tests under most conditions. However, the results obtained from the information criteria are somewhat contradictory under certain conditions, suggesting a need for further investigation and interpretation. The proposed test statistics are used in three datasets.
{"title":"The generalized Hausman test for detecting non-normality in the latent variable distribution of the two-parameter IRT model.","authors":"Lucia Guastadisegni, Silvia Cagnone, Irini Moustaki, Vassilis Vasdekis","doi":"10.1111/bmsp.12379","DOIUrl":"https://doi.org/10.1111/bmsp.12379","url":null,"abstract":"<p><p>This paper introduces the generalized Hausman test as a novel method for detecting the non-normality of the latent variable distribution of the unidimensional latent trait model for binary data. The test utilizes the pairwise maximum likelihood estimator for the parameters of the latent trait model, which assumes normality of the latent variable, and the maximum likelihood estimator obtained under a semi-non-parametric framework, allowing for a more flexible distribution of the latent variable. The performance of the generalized Hausman test is evaluated through a simulation study and compared with other test statistics available in the literature for testing latent variable distribution fit and an overall goodness-of-fit test statistic. Additionally, three information criteria are used to select the best-fitted model. The simulation results show that the generalized Hausman test outperforms the other tests under most conditions. However, the results obtained from the information criteria are somewhat contradictory under certain conditions, suggesting a need for further investigation and interpretation. The proposed test statistics are used in three datasets.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siqi He, Steven Andrew Culpepper, Jeffrey A Douglas
Diagnostic models (DM) have been widely used to classify respondents' latent attributes in cognitive and non-cognitive assessments. The integration of response times (RTs) with DM presents additional evidence to understand respondents' problem-solving behaviours. While recent research has explored using sparse latent class models (SLCM) to infer the latent structure of items based on item responses, the incorporation of RT data within these models remains underexplored. This study extends the SLCM framework to include RT, relaxing the conditional independence assumption between RT and latent attributes given individual speed. This adaptation provides a more flexible framework for jointly modelling RT and item responses. While the proposed model holds promise for applications in educational assessment, this study applied the model to the Fisher Temperament Inventory, yielding findings that provide a novel perspective on utilizing DM with RT in personality assessments. Additionally, a Gibbs sampling algorithm is proposed for parameter estimation. Results from Monte Carlo simulations demonstrate the algorithm's accuracy and efficiency.
{"title":"A sparse latent class model incorporating response times.","authors":"Siqi He, Steven Andrew Culpepper, Jeffrey A Douglas","doi":"10.1111/bmsp.12380","DOIUrl":"https://doi.org/10.1111/bmsp.12380","url":null,"abstract":"<p><p>Diagnostic models (DM) have been widely used to classify respondents' latent attributes in cognitive and non-cognitive assessments. The integration of response times (RTs) with DM presents additional evidence to understand respondents' problem-solving behaviours. While recent research has explored using sparse latent class models (SLCM) to infer the latent structure of items based on item responses, the incorporation of RT data within these models remains underexplored. This study extends the SLCM framework to include RT, relaxing the conditional independence assumption between RT and latent attributes given individual speed. This adaptation provides a more flexible framework for jointly modelling RT and item responses. While the proposed model holds promise for applications in educational assessment, this study applied the model to the Fisher Temperament Inventory, yielding findings that provide a novel perspective on utilizing DM with RT in personality assessments. Additionally, a Gibbs sampling algorithm is proposed for parameter estimation. Results from Monte Carlo simulations demonstrate the algorithm's accuracy and efficiency.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}