Exhaled nitric oxide in intubated ICU patients on mechanical ventilation-a feasibility study.

IF 3.7 4区 医学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of breath research Pub Date : 2023-09-25 DOI:10.1088/1752-7163/acf607
Andreas Kofoed, Mathias Hindborg, Jeppe Hjembæk-Brandt, Christian Dalby Sørensen, Mette Kolpen, Morten H Bestle
{"title":"Exhaled nitric oxide in intubated ICU patients on mechanical ventilation-a feasibility study.","authors":"Andreas Kofoed,&nbsp;Mathias Hindborg,&nbsp;Jeppe Hjembæk-Brandt,&nbsp;Christian Dalby Sørensen,&nbsp;Mette Kolpen,&nbsp;Morten H Bestle","doi":"10.1088/1752-7163/acf607","DOIUrl":null,"url":null,"abstract":"<p><p>It can be a clinical challenge to distinguish inflammation from infection in critically ill patients. Therefore, valid and conclusive surrogate markers for infections are desired. Nitric oxide (NO) might be that marker since concentrations of exhaled NO have shown to change in the presence of various diseases. This observational, prospective, single-center feasibility study aimed to investigate if fractional exhaled NO (FeNO) can be measured in intubated patients with or without infection, pneumonia and septic shock in a standardized, reliable setting. 20 intubated patients in the intensive care unit (ICU) were included for analysis. FeNO mean values were measured in the endotracheal tube via the suction channel using a chemiluminescence based analyzer. We developed a pragmatic method to measure FeNO repeatedly and reliably in intubated patients using a chemiluminescence based analyzer. We found a median of 0.98 (0.59-1.44) FeNO mean (ppb) in exhaled breath from all 20 intubated patient. Intubated patient with suspected infection had a significantly lower median FeNO mean compared with the intubated patients without suspected infection. Similarly did patients with septic shock demonstrate a significantly lower median FeNO mean than without septic shock. We found no statistical difference in median FeNO mean for intubated patients with pneumonia. It was feasible to measure FeNO in intubated patients in the ICU. Our results indicate decreased levels of FeNO in infected intubated patients in the ICU. The study was not powered to provide firm conclusions, so larger trials are needed to confirm the results and to prove FeNO as a useful biomarker for distinguishment between infection and inflammation in the ICU.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/acf607","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

It can be a clinical challenge to distinguish inflammation from infection in critically ill patients. Therefore, valid and conclusive surrogate markers for infections are desired. Nitric oxide (NO) might be that marker since concentrations of exhaled NO have shown to change in the presence of various diseases. This observational, prospective, single-center feasibility study aimed to investigate if fractional exhaled NO (FeNO) can be measured in intubated patients with or without infection, pneumonia and septic shock in a standardized, reliable setting. 20 intubated patients in the intensive care unit (ICU) were included for analysis. FeNO mean values were measured in the endotracheal tube via the suction channel using a chemiluminescence based analyzer. We developed a pragmatic method to measure FeNO repeatedly and reliably in intubated patients using a chemiluminescence based analyzer. We found a median of 0.98 (0.59-1.44) FeNO mean (ppb) in exhaled breath from all 20 intubated patient. Intubated patient with suspected infection had a significantly lower median FeNO mean compared with the intubated patients without suspected infection. Similarly did patients with septic shock demonstrate a significantly lower median FeNO mean than without septic shock. We found no statistical difference in median FeNO mean for intubated patients with pneumonia. It was feasible to measure FeNO in intubated patients in the ICU. Our results indicate decreased levels of FeNO in infected intubated patients in the ICU. The study was not powered to provide firm conclusions, so larger trials are needed to confirm the results and to prove FeNO as a useful biomarker for distinguishment between infection and inflammation in the ICU.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ICU机械通气插管患者呼出一氧化氮的可行性研究。
区分危重患者的炎症和感染可能是一项临床挑战。因此,需要有效和决定性的替代感染标志物。一氧化氮(NO)可能是该标志物,因为呼出的NO浓度已显示出在各种疾病的存在下会发生变化。这项观察性、前瞻性、单中心的可行性研究旨在调查是否可以在标准化、可靠的环境中测量有或没有感染、肺炎和感染性休克的插管患者的呼出NO(FeNO)分数。纳入20名重症监护室(ICU)插管患者进行分析。使用基于化学发光的分析仪通过抽吸通道在气管插管中测量FeNO平均值。我们开发了一种实用的方法,使用基于化学发光的分析仪在插管患者中重复可靠地测量FeNO。我们发现,所有20名插管患者呼出的FeNO平均值(ppb)的中位数为0.98(0.59-1.44)。与未经疑似感染的插管患者相比,经疑似感染插管患者的FeNO平均中位数显著较低。同样,感染性休克患者的FeNO中位数明显低于无感染性休克的患者。我们发现插管的肺炎患者的FeNO中位数没有统计学差异。在ICU中测量插管患者的FeNO是可行的。我们的研究结果表明,ICU中受感染插管患者的FeNO水平降低。这项研究无法提供确切的结论,因此需要更大规模的试验来证实结果,并证明FeNO是区分重症监护室感染和炎症的有用生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of breath research
Journal of breath research BIOCHEMICAL RESEARCH METHODS-RESPIRATORY SYSTEM
CiteScore
7.60
自引率
21.10%
发文量
49
审稿时长
>12 weeks
期刊介绍: Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics. Typical areas of interest include: Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research. Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments. Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway. Cellular and molecular level in vitro studies. Clinical, pharmacological and forensic applications. Mathematical, statistical and graphical data interpretation.
期刊最新文献
Correlations between Propofol Concentration in Exhaled Breath and BIS in Patients undergoing Thyroid Surgery. Halitosis in oral lichen planus patients. Validation of a sensor system for the measurement of breath ammonia using selected-ion flow-tube mass spectrometry. Therapeutic efficacy of a probiotic preparation on idiopathic halitosis: a retrospective observational study. Effectiveness of a combination of laccase and green coffee extract on oral malodor: A comparative, randomized, controlled, evaluator-blind, parallel-group trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1