Detecting Cheating in Large-Scale Assessment: The Transfer of Detectors to New Tests.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-10-01 Epub Date: 2022-11-04 DOI:10.1177/00131644221132723
Jochen Ranger, Nico Schmidt, Anett Wolgast
{"title":"Detecting Cheating in Large-Scale Assessment: The Transfer of Detectors to New Tests.","authors":"Jochen Ranger, Nico Schmidt, Anett Wolgast","doi":"10.1177/00131644221132723","DOIUrl":null,"url":null,"abstract":"<p><p>Recent approaches to the detection of cheaters in tests employ detectors from the field of machine learning. Detectors based on supervised learning algorithms achieve high accuracy but require labeled data sets with identified cheaters for training. Labeled data sets are usually not available at an early stage of the assessment period. In this article, we discuss the approach of adapting a detector that was trained previously with a labeled training data set to a new unlabeled data set. The training and the new data set may contain data from different tests. The adaptation of detectors to new data or tasks is denominated as transfer learning in the field of machine learning. We first discuss the conditions under which a detector of cheating can be transferred. We then investigate whether the conditions are met in a real data set. We finally evaluate the benefits of transferring a detector of cheating. We find that a transferred detector has higher accuracy than an unsupervised detector of cheating. A naive transfer that consists of a simple reuse of the detector increases the accuracy considerably. A transfer via a self-labeling (SETRED) algorithm increases the accuracy slightly more than the naive transfer. The findings suggest that the detection of cheating might be improved by using existing detectors of cheating at an early stage of an assessment period.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10470164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644221132723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent approaches to the detection of cheaters in tests employ detectors from the field of machine learning. Detectors based on supervised learning algorithms achieve high accuracy but require labeled data sets with identified cheaters for training. Labeled data sets are usually not available at an early stage of the assessment period. In this article, we discuss the approach of adapting a detector that was trained previously with a labeled training data set to a new unlabeled data set. The training and the new data set may contain data from different tests. The adaptation of detectors to new data or tasks is denominated as transfer learning in the field of machine learning. We first discuss the conditions under which a detector of cheating can be transferred. We then investigate whether the conditions are met in a real data set. We finally evaluate the benefits of transferring a detector of cheating. We find that a transferred detector has higher accuracy than an unsupervised detector of cheating. A naive transfer that consists of a simple reuse of the detector increases the accuracy considerably. A transfer via a self-labeling (SETRED) algorithm increases the accuracy slightly more than the naive transfer. The findings suggest that the detection of cheating might be improved by using existing detectors of cheating at an early stage of an assessment period.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模评估中的作弊检测:检测器向新测试的转移。
最近在测试中检测作弊者的方法使用了机器学习领域的检测器。基于监督学习算法的检测器实现了高精度,但需要带有已识别作弊者的标记数据集进行训练。标记的数据集通常在评估期的早期阶段不可用。在本文中,我们讨论了将先前使用标记的训练数据集训练的检测器调整为新的未标记数据集的方法。训练和新的数据集可以包含来自不同测试的数据。在机器学习领域,检测器对新数据或任务的适应被称为迁移学习。我们首先讨论作弊检测器可以转移的条件。然后,我们调查在真实数据集中是否满足这些条件。我们最后评估了转移作弊检测器的好处。我们发现,转移检测器比无监督的作弊检测器具有更高的准确性。一个简单的转移,包括检测器的简单重用,大大提高了精度。通过自标记(SETRED)算法的转移比原始转移略微提高了准确性。研究结果表明,在评估期的早期阶段,使用现有的作弊检测器可能会提高作弊的检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1