{"title":"Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors","authors":"Yonggang Yao, Feng Jiang, Chongyin Yang, Kun Kelvin Fu, John Hayden, Chuan-Fu Lin, Hua Xie, Miaolun Jiao, Chunpeng Yang, Yilin Wang, Shuaiming He, Fujun Xu, Emily Hitz, Tingting Gao, Jiaqi Dai, Wei Luo, Gary Rubloff, Chunsheng Wang, Liangbing Hu*","doi":"10.1021/acsnano.7b08584","DOIUrl":null,"url":null,"abstract":"<p >Carbon nanomaterials are desirable candidates for lightweight, highly conductive, and corrosion-resistant current collectors. However, a key obstacle is their weak interconnection between adjacent nanostructures, which renders orders of magnitude lower electrical conductivity and mechanical strength in the bulk assemblies. Here we report an “epitaxial welding” strategy to engineer carbon nanotubes (CNTs) into highly crystalline and interconnected structures. Solution-based polyacrylonitrile was conformally coated on CNTs as “nanoglue” to physically join CNTs into a network, followed by a rapid high-temperature annealing (>2800 K, overall ~30 min) to graphitize the polymer coating into crystalline layers that also bridge the adjacent CNTs to form an interconnected structure. The contact-welded CNTs (W-CNTs) exhibit both a high conductivity (~1500 S/cm) and a high tensile strength (~120 MPa), which are 5 and 20 times higher than the unwelded CNTs, respectively. In addition, the W-CNTs display chemical and electrochemical stabilities in strong acidic/alkaline electrolytes (>6 mol/L) when potentiostatically stressing at both cathodic and anodic potentials. With these exceptional properties, the W-CNT films are optimal as high-performance current collectors and were demonstrated in the state-of-the-art aqueous battery using a “water-in-salt” electrolyte.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"12 6","pages":"5266–5273"},"PeriodicalIF":15.8000,"publicationDate":"2018-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acsnano.7b08584","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.7b08584","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 46
Abstract
Carbon nanomaterials are desirable candidates for lightweight, highly conductive, and corrosion-resistant current collectors. However, a key obstacle is their weak interconnection between adjacent nanostructures, which renders orders of magnitude lower electrical conductivity and mechanical strength in the bulk assemblies. Here we report an “epitaxial welding” strategy to engineer carbon nanotubes (CNTs) into highly crystalline and interconnected structures. Solution-based polyacrylonitrile was conformally coated on CNTs as “nanoglue” to physically join CNTs into a network, followed by a rapid high-temperature annealing (>2800 K, overall ~30 min) to graphitize the polymer coating into crystalline layers that also bridge the adjacent CNTs to form an interconnected structure. The contact-welded CNTs (W-CNTs) exhibit both a high conductivity (~1500 S/cm) and a high tensile strength (~120 MPa), which are 5 and 20 times higher than the unwelded CNTs, respectively. In addition, the W-CNTs display chemical and electrochemical stabilities in strong acidic/alkaline electrolytes (>6 mol/L) when potentiostatically stressing at both cathodic and anodic potentials. With these exceptional properties, the W-CNT films are optimal as high-performance current collectors and were demonstrated in the state-of-the-art aqueous battery using a “water-in-salt” electrolyte.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.