Use of patient-specific guides and 3D model in scapula osteotomy for symptomatic malunion.

IF 3.2 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING 3D printing in medicine Pub Date : 2023-09-06 DOI:10.1186/s41205-023-00184-w
Stefano Cattaneo, Marco Domenicucci, Claudio Galante, Elena Biancardi, Alessandro Casiraghi, Giuseppe Milano
{"title":"Use of patient-specific guides and 3D model in scapula osteotomy for symptomatic malunion.","authors":"Stefano Cattaneo, Marco Domenicucci, Claudio Galante, Elena Biancardi, Alessandro Casiraghi, Giuseppe Milano","doi":"10.1186/s41205-023-00184-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Scapular osteotomy for malunion can lead to resolution of pain and functional improvement in scapula fracture sequelae. Understanding three-dimensional bone morphology and analysing post-traumatic deformity is the main step of planning and the key to success of the procedure. 3D models and patient-specific guides are a growing technology to enhance accuracy of planning and to assist during surgery.</p><p><strong>Case presentation: </strong>We report the case of a 50 years old male, complaining of pain and limited function after a malunited scapular body fracture. Clinical assessment showed a severe impairment of shoulder function with active and passive forward flexion limited to 80°, absent external rotation, and internal rotation limited to the buttock. X-rays and CT scan showed an excessive lateral border offset of 53 mm and complete displacement of the glenoid segment anteriorly and medially to the scapular body, with impingement between the lateral most prominent scapular bone spur and humeral shaft. Glenopolar angle was 19°, scapular body angulation on the sagittal plane was 12°. Corrective osteotomy was planned on a virtual interactive rendering and on 3D printed models. Patient-specific guides were developed to perform a body-spine osteotomy with removal of a bone wedge, and a glenoid-spine osteotomy; a patient-specific wedge spacer was used to hold the reduction during plate fixation. Follow-up up to 12 months after surgery demonstrated improvement in scapula anatomy, shoulder girdle function, and patient-reported outcomes.</p><p><strong>Conclusions: </strong>For the first time in scapula malunion surgery, patient-specific osteotomy guides were succesfully used during surgery to perform osteotomies and to assist in reduction maneuvers.</p>","PeriodicalId":72036,"journal":{"name":"3D printing in medicine","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10481603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D printing in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41205-023-00184-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Scapular osteotomy for malunion can lead to resolution of pain and functional improvement in scapula fracture sequelae. Understanding three-dimensional bone morphology and analysing post-traumatic deformity is the main step of planning and the key to success of the procedure. 3D models and patient-specific guides are a growing technology to enhance accuracy of planning and to assist during surgery.

Case presentation: We report the case of a 50 years old male, complaining of pain and limited function after a malunited scapular body fracture. Clinical assessment showed a severe impairment of shoulder function with active and passive forward flexion limited to 80°, absent external rotation, and internal rotation limited to the buttock. X-rays and CT scan showed an excessive lateral border offset of 53 mm and complete displacement of the glenoid segment anteriorly and medially to the scapular body, with impingement between the lateral most prominent scapular bone spur and humeral shaft. Glenopolar angle was 19°, scapular body angulation on the sagittal plane was 12°. Corrective osteotomy was planned on a virtual interactive rendering and on 3D printed models. Patient-specific guides were developed to perform a body-spine osteotomy with removal of a bone wedge, and a glenoid-spine osteotomy; a patient-specific wedge spacer was used to hold the reduction during plate fixation. Follow-up up to 12 months after surgery demonstrated improvement in scapula anatomy, shoulder girdle function, and patient-reported outcomes.

Conclusions: For the first time in scapula malunion surgery, patient-specific osteotomy guides were succesfully used during surgery to perform osteotomies and to assist in reduction maneuvers.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在有症状性骨不愈合的肩胛骨截骨术中应用患者特异性导向器和3D模型。
背景:肩胛骨畸形愈合的截骨术可以缓解疼痛和改善肩胛骨骨折后遗症的功能。了解三维骨形态和分析创伤后畸形是计划的主要步骤,也是手术成功的关键。3D模型和患者特定指南是一种不断发展的技术,可以提高计划的准确性,并在手术期间提供辅助。病例介绍:我们报告一例50岁男性,在肩胛骨畸形骨折后,主诉疼痛和功能受限。临床评估显示肩部功能严重受损,主动和被动前屈限制在80°,缺乏外旋,内旋限制在臀部。x线和CT扫描显示肩胛骨外侧边界偏移过多53 mm,肩胛骨前部和内侧关节段完全移位,肩胛骨外侧最突出的骨刺与肱骨干之间发生撞击。肩关节角19°,矢状面肩胛骨体角12°。矫正截骨是在虚拟交互渲染和3D打印模型上计划的。制定了针对患者的导尿管,以实施带骨楔的身体-脊柱截骨术和肩胛-脊柱截骨术;在钢板固定期间,使用患者专用楔形垫片固定复位。术后随访12个月,发现肩胛骨解剖、肩带功能和患者报告的预后均有改善。结论:首次在肩胛骨不愈合手术中,患者特异性截骨指南在手术中成功应用于截骨和辅助复位操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
期刊最新文献
Development and assessment of case-specific physical and augmented reality simulators for intracranial aneurysm clipping. Fast and accurate distal locking of interlocked intramedullary nails using computer-vision and a 3D printed device. Metamaterial design for aortic aneurysm simulation using 3D printing. 3D-printing inherently MRI-visible accessories in aiding MRI-guided biopsies. Effectiveness of a new 3D printed simulator for mitral transcatheter edge-to-edge repair in enhancing the confidence and procedural skills of the operator.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1