{"title":"Novel investigational approaches for high-risk genetic subsets of AML: TP53, KMT2A, FLT3.","authors":"Kieran D Sahasrabudhe, Alice S Mims","doi":"10.1182/hematology.2022000325","DOIUrl":null,"url":null,"abstract":"<p><p>The treatment landscape in acute myeloid leukemia (AML) is rapidly evolving, with multiple new therapies approved in recent years. However, the prognosis for patients with high-risk genetic subsets of AML remains poor, and the development of more effective treatment options for these patients is ongoing. Three of these high-risk AML patient subsets include TP53-mutated AML, FLT3-internal tandem duplication (ITD)-mutated AML, and AML harboring rearrangements affecting the KMT2A locus (KMT2A-r AML). The prognosis for TP53-mutated AML remains poor with both intensive and targeted regimens, including those incorporating the BCL-2 inhibitor, venetoclax. Allogeneic hematopoietic stem cell transplantation is the only potentially curative therapy for these patients, but posttransplant relapse rates remain high. Patients with FLT3-ITD-mutated AML continue to have suboptimal outcomes with standard therapies and experience high rates of relapse following transplant. KMT2A-r AML is also associated with poor outcomes with current treatment approaches, and effective standards of care are lacking for patients with relapsed/refractory disease. This article discusses current treatment approaches, along with the investigational agents being explored for the treatment of these 3 AML subsets, focusing primarily on agents that are further along in development.</p>","PeriodicalId":12973,"journal":{"name":"Hematology. American Society of Hematology. Education Program","volume":"2022 1","pages":"15-22"},"PeriodicalIF":2.9000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820850/pdf/hem.2022000325.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hematology. American Society of Hematology. Education Program","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1182/hematology.2022000325","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 2
Abstract
The treatment landscape in acute myeloid leukemia (AML) is rapidly evolving, with multiple new therapies approved in recent years. However, the prognosis for patients with high-risk genetic subsets of AML remains poor, and the development of more effective treatment options for these patients is ongoing. Three of these high-risk AML patient subsets include TP53-mutated AML, FLT3-internal tandem duplication (ITD)-mutated AML, and AML harboring rearrangements affecting the KMT2A locus (KMT2A-r AML). The prognosis for TP53-mutated AML remains poor with both intensive and targeted regimens, including those incorporating the BCL-2 inhibitor, venetoclax. Allogeneic hematopoietic stem cell transplantation is the only potentially curative therapy for these patients, but posttransplant relapse rates remain high. Patients with FLT3-ITD-mutated AML continue to have suboptimal outcomes with standard therapies and experience high rates of relapse following transplant. KMT2A-r AML is also associated with poor outcomes with current treatment approaches, and effective standards of care are lacking for patients with relapsed/refractory disease. This article discusses current treatment approaches, along with the investigational agents being explored for the treatment of these 3 AML subsets, focusing primarily on agents that are further along in development.