Ruana Cardoso-Lima, Ralph Santos-Oliveira, Pedro Filho Noronha Souza, Leandro R S Barbosa, Gijs J L Wuite, Luciana Magalhães Rebelo Alencar
{"title":"Physical virology: how physics is enabling a better understanding of recent viral invaders.","authors":"Ruana Cardoso-Lima, Ralph Santos-Oliveira, Pedro Filho Noronha Souza, Leandro R S Barbosa, Gijs J L Wuite, Luciana Magalhães Rebelo Alencar","doi":"10.1007/s12551-023-01075-4","DOIUrl":null,"url":null,"abstract":"<p><p>The world is frequently afflicted by several viral outbreaks that bring diseases and health crises. It is vital to comprehend how viral assemblies' fundamental components work to counteract them. Determining the ultrastructure and nanomechanical characteristics of viruses from a physical standpoint helps categorize their mechanical characteristics, offers insight into new treatment options, and/or shows weak spots that can clarify methods for medication targeting. This study compiles the findings from studies on the ultrastructure and nanomechanical behavior of SARS-CoV-2, ZIKV (Zika virus), and CHIKV (Chikungunya virus) viral particles. With results that uncovered aspects of the organization and the spatial distribution of the proteins on the surface of the viral particle as well as the deformation response of the particles when applied a recurring loading force, this review aims to provide further discussion on the mechanical properties of viral particles at the nanoscale, offering new prospects that could be employed for designing strategies for the prevention and treatment of viral diseases.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s12551-023-01075-4.</p>","PeriodicalId":9094,"journal":{"name":"Biophysical reviews","volume":"15 4","pages":"611-623"},"PeriodicalIF":4.9000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12551-023-01075-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The world is frequently afflicted by several viral outbreaks that bring diseases and health crises. It is vital to comprehend how viral assemblies' fundamental components work to counteract them. Determining the ultrastructure and nanomechanical characteristics of viruses from a physical standpoint helps categorize their mechanical characteristics, offers insight into new treatment options, and/or shows weak spots that can clarify methods for medication targeting. This study compiles the findings from studies on the ultrastructure and nanomechanical behavior of SARS-CoV-2, ZIKV (Zika virus), and CHIKV (Chikungunya virus) viral particles. With results that uncovered aspects of the organization and the spatial distribution of the proteins on the surface of the viral particle as well as the deformation response of the particles when applied a recurring loading force, this review aims to provide further discussion on the mechanical properties of viral particles at the nanoscale, offering new prospects that could be employed for designing strategies for the prevention and treatment of viral diseases.
Supplementary information: The online version contains supplementary material available at 10.1007/s12551-023-01075-4.
期刊介绍:
Biophysical Reviews aims to publish critical and timely reviews from key figures in the field of biophysics. The bulk of the reviews that are currently published are from invited authors, but the journal is also open for non-solicited reviews. Interested authors are encouraged to discuss the possibility of contributing a review with the Editor-in-Chief prior to submission. Through publishing reviews on biophysics, the editors of the journal hope to illustrate the great power and potential of physical techniques in the biological sciences, they aim to stimulate the discussion and promote further research and would like to educate and enthuse basic researcher scientists and students of biophysics. Biophysical Reviews covers the entire field of biophysics, generally defined as the science of describing and defining biological phenomenon using the concepts and the techniques of physics. This includes but is not limited by such areas as: - Bioinformatics - Biophysical methods and instrumentation - Medical biophysics - Biosystems - Cell biophysics and organization - Macromolecules: dynamics, structures and interactions - Single molecule biophysics - Membrane biophysics, channels and transportation