{"title":"Emission color tuning and dual-mode luminescence thermometry design in Dy<sup>3+</sup>/Eu<sup>3+</sup>co-doped SrMoO<sub>4</sub>phosphors.","authors":"Vaibhav Chauhan, Prashant Dixit, Prashant Kumar Pandey, Satyam Chaturvedi, Praveen Chandra Pandey","doi":"10.1088/2050-6120/acf97b","DOIUrl":null,"url":null,"abstract":"<p><p>The challenge of building a highly reliable contactless temperature probe with high sensitivity, good temperature-induced color discriminability, and economical synthesis has prompted the research community to work in the field of rare-earth-based luminescence thermometry. Moreover, the fast-growing market for optoelectronic devices has increased the demand for tunable color-emitting phosphors. In this study, Dy<sup>3+</sup>/Eu<sup>3+</sup>co-doped SrMoO<sub>4</sub>phosphors were developed as tunable color-emitting source and dual-mode luminescence thermometer. A facile and cost-effective auto-combustion method was used to synthesize the phosphors. Our work demonstrates a viable scheme for tailoring the emission of single-phase phosphors by precisely controlling the dopant concentrations and by modulating excitation wavelength. The overall emission is tuned from greenish-yellow to white and greenish-yellow to reddish-orange. A detailed energy transfer process from the host to the Ln<sup>3+</sup>ions and between the Ln<sup>3+</sup>ions is discussed. Further, anti-thermal quenching in the emission of Dy<sup>3+</sup>ion is observed when excited with 297 nm. The dual-mode luminescence thermometry has been studied by analyzing the fluorescence intensity ratio of Dy<sup>3+</sup>and Eu<sup>3+</sup>ions upon excitation at 297 nm. The maximum relative sensitivity value for 4% Eu<sup>3+</sup>co-doped SrMoO<sub>4</sub>:4%Dy<sup>3+</sup>phosphor is 1.46% K<sup>-1</sup>at 300 K. Furthermore, the configurational coordinate diagram is presented to elucidate the nature of temperature-dependent emission. Therefore, our research opens up new avenues for the development of color-tunable luminescent materials for various optoelectronic and temperature-sensing applications.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods and Applications in Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1088/2050-6120/acf97b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The challenge of building a highly reliable contactless temperature probe with high sensitivity, good temperature-induced color discriminability, and economical synthesis has prompted the research community to work in the field of rare-earth-based luminescence thermometry. Moreover, the fast-growing market for optoelectronic devices has increased the demand for tunable color-emitting phosphors. In this study, Dy3+/Eu3+co-doped SrMoO4phosphors were developed as tunable color-emitting source and dual-mode luminescence thermometer. A facile and cost-effective auto-combustion method was used to synthesize the phosphors. Our work demonstrates a viable scheme for tailoring the emission of single-phase phosphors by precisely controlling the dopant concentrations and by modulating excitation wavelength. The overall emission is tuned from greenish-yellow to white and greenish-yellow to reddish-orange. A detailed energy transfer process from the host to the Ln3+ions and between the Ln3+ions is discussed. Further, anti-thermal quenching in the emission of Dy3+ion is observed when excited with 297 nm. The dual-mode luminescence thermometry has been studied by analyzing the fluorescence intensity ratio of Dy3+and Eu3+ions upon excitation at 297 nm. The maximum relative sensitivity value for 4% Eu3+co-doped SrMoO4:4%Dy3+phosphor is 1.46% K-1at 300 K. Furthermore, the configurational coordinate diagram is presented to elucidate the nature of temperature-dependent emission. Therefore, our research opens up new avenues for the development of color-tunable luminescent materials for various optoelectronic and temperature-sensing applications.
期刊介绍:
Methods and Applications in Fluorescence focuses on new developments in fluorescence spectroscopy, imaging, microscopy, fluorescent probes, labels and (nano)materials. It will feature both methods and advanced (bio)applications and accepts original research articles, reviews and technical notes.