Pub Date : 2024-10-23DOI: 10.1088/2050-6120/ad8abf
Tereza Dolejšová, Petra Liskova, Nitjawan Sahatsapan, Viktor Mojr, Radek Pohl, Hana Brzobohatá, Milica Dugić, Tomáš Křížek, Lukasz Cwiklik, Gabriela Mikušová, Dominik Rejman, Radovan Fiser
Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPO) are small synthetic modular peptidomimetics with promising antimicrobial activity. The LEGO-LPPO mechanism of antibacterial action has been determined to be the depolarization and disruption of bacterial membranes. Their modular nature is advantageous for fine tuning their biological properties. In order to optimize the structure of LEGO-LPPO even further, it is important to understand the interaction of LEGO-LPPO with bacterial membranes at the molecular level. In this work, we present the synthesis of five LEGO-LPPO (designated as 1_naph2-4-G to 5_naph2-4-G) molecules bearing fluorescent naphtylethyl moieties and their usage in the study of LEGO-LPPO behaviour in the membrane. Our goal was to characterize fluorescently labelled LEGO-LPPO under conditions that do not completely disrupt the membrane, mostly in the form of membrane-bound monomers.
We observed the intramolecular interactions of hydrophobic modules of 1_naph2-4-G in the buffer by detecting dynamic naphthyl excimers and their disappearance after 1_naph2-4-G bind into the membranes. In the membrane, the molecule 1_naph2-4-G slightly affects the membrane fluidity of DOPG membranes above the phase transition. The naphthyl fluorophore itself has fast and almost unrestricted rotation around ethylene linking groups (rinf=0.010), which indicates a considerable chaotropic effect of the hydrophobic modules of 1_naph2-4-G at the given depth of the membrane.
1_naph2-4-G proved to be a useful model for observing the interaction of LEGO-LPPO antibiotics with the phospholipid bilayer enabling us to decipher its effects on membrane state and dynamics; its binding and penetration into the membrane, its structure and the particular depth that it occupies.
.
{"title":"Naphthylated LEGO-lipophopsphonoxin antibiotics used as a fluorescent tool for the observation of target membrane perturbations preceding its disruption.","authors":"Tereza Dolejšová, Petra Liskova, Nitjawan Sahatsapan, Viktor Mojr, Radek Pohl, Hana Brzobohatá, Milica Dugić, Tomáš Křížek, Lukasz Cwiklik, Gabriela Mikušová, Dominik Rejman, Radovan Fiser","doi":"10.1088/2050-6120/ad8abf","DOIUrl":"https://doi.org/10.1088/2050-6120/ad8abf","url":null,"abstract":"<p><p>Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPO) are small synthetic modular peptidomimetics with promising antimicrobial activity. The LEGO-LPPO mechanism of antibacterial action has been determined to be the depolarization and disruption of bacterial membranes. Their modular nature is advantageous for fine tuning their biological properties. In order to optimize the structure of LEGO-LPPO even further, it is important to understand the interaction of LEGO-LPPO with bacterial membranes at the molecular level. In this work, we present the synthesis of five LEGO-LPPO (designated as 1_naph2-4-G to 5_naph2-4-G) molecules bearing fluorescent naphtylethyl moieties and their usage in the study of LEGO-LPPO behaviour in the membrane. Our goal was to characterize fluorescently labelled LEGO-LPPO under conditions that do not completely disrupt the membrane, mostly in the form of membrane-bound monomers.
We observed the intramolecular interactions of hydrophobic modules of 1_naph2-4-G in the buffer by detecting dynamic naphthyl excimers and their disappearance after 1_naph2-4-G bind into the membranes. In the membrane, the molecule 1_naph2-4-G slightly affects the membrane fluidity of DOPG membranes above the phase transition. The naphthyl fluorophore itself has fast and almost unrestricted rotation around ethylene linking groups (rinf=0.010), which indicates a considerable chaotropic effect of the hydrophobic modules of 1_naph2-4-G at the given depth of the membrane.
1_naph2-4-G proved to be a useful model for observing the interaction of LEGO-LPPO antibiotics with the phospholipid bilayer enabling us to decipher its effects on membrane state and dynamics; its binding and penetration into the membrane, its structure and the particular depth that it occupies.
.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142503960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Detection of autofluorescence parameters is a useful approach to gain insight into the physiological state of plants and algae, but the effect of reabsorption hinders unambiguous interpretation ofin vivodata. The exceptional morphological features ofNitellopsis obtusamade it possible to measure autofluorescence spectra along single internodal cells and estimate relative changes in autofluorescence intensity in selected spectral regions at room temperatures, avoiding the problems associated with thick or optically dense samples. The response of algal cells to controlled white light and DCMU herbicide was analyzed by monitoring changes in peak FL intensity at 680 nm and in F680/F750 ratio. Determining the association between the selected spectral FL parameters revealed an exponential relationship, which provides a quantitative description of photoinduced changes. The ability to discern the effect of DCMU not only in the autofluorescence spectra of dark-adapted cells, but also in the case of light-adapted cells, and even after certain doses of excess light, suggests that the proposed autofluorescence analysis ofN. obtusamay be useful for detecting external stressors in the field.
{"title":"Combining<i>Nitellopsis obtusa</i>autofluorescence intensity and F680/F750 ratio to discriminate responses to environmental stressors.","authors":"Ausrine Navickaite, Vilmantas Pupkis, Agne Kalnaityte-Vengeliene, Indre Lapeikaite, Vilma Kisnieriene, Saulius Bagdonas","doi":"10.1088/2050-6120/ad6ca2","DOIUrl":"10.1088/2050-6120/ad6ca2","url":null,"abstract":"<p><p>Detection of autofluorescence parameters is a useful approach to gain insight into the physiological state of plants and algae, but the effect of reabsorption hinders unambiguous interpretation of<i>in vivo</i>data. The exceptional morphological features of<i>Nitellopsis obtusa</i>made it possible to measure autofluorescence spectra along single internodal cells and estimate relative changes in autofluorescence intensity in selected spectral regions at room temperatures, avoiding the problems associated with thick or optically dense samples. The response of algal cells to controlled white light and DCMU herbicide was analyzed by monitoring changes in peak FL intensity at 680 nm and in F680/F750 ratio. Determining the association between the selected spectral FL parameters revealed an exponential relationship, which provides a quantitative description of photoinduced changes. The ability to discern the effect of DCMU not only in the autofluorescence spectra of dark-adapted cells, but also in the case of light-adapted cells, and even after certain doses of excess light, suggests that the proposed autofluorescence analysis of<i>N. obtusa</i>may be useful for detecting external stressors in the field.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cesium lead halide perovskite (CsPbX3; X = Cl, Br, I) nanocrystals showing intense band-edge emission and high photoluminescence quantum yield are known to be a potential candidate for application in optoelectronic devices. However, controlling toxicity due to the presence of Pb2+in lead-based halide perovskites is a major challenge for the environment that needs to be tackled cautiously. In this work, we have partially replaced Pb2+with Mn2+ions in the CsPb(Cl/Br)3nanocrystals and investigated their impact on the structural and optical properties. The Rietveld refinement shows that CsPbCl2Br nanocrystals possess a cubic crystal structure withPm3̅mspace group, the Mn2+doping results in the contraction of the unit cell. The CsPb(Cl/Br)3: Mn nanocrystals show a substantial change in the optical properties with an additional emission band at ∼588 nm through a d-d transition, changing the emission color from blue to pink. Here, a didodecyldimethylammonium bromide (DDAB) ligand that triggers both anion and ligand exchange in the CsPb(Cl/Br)3: Mn nanocrystals have been used to regulate the exchange reaction and tune the emission color of halide perovskites by changing the peak position and the PL intensities of band-edge and Mn2+defect states. We have also shown that oleic acid helps in the desorption of oleylamine capping from the CsPb(Cl/Br)3: Mn nanocrystal surfaces and DDAB, resulting in the substitution of Cl-with Br-as well as provides capping with shorter branched length ligand which led to increase in the overall PL intensity by many folds.
{"title":"Effect of Mn<sup>2+</sup>doping and DDAB-assisted postpassivation on the structural and optical properties of CsPb(Cl/Br)<sub>3</sub>halide perovskite nanocrystals.","authors":"Charu Dubey, Anjana Yadav, Santosh Kachhap, Sunil Kumar Singh, Govind Gupta, Satendra Pal Singh, Akhilesh Kumar Singh","doi":"10.1088/2050-6120/ad6ca1","DOIUrl":"10.1088/2050-6120/ad6ca1","url":null,"abstract":"<p><p>Cesium lead halide perovskite (CsPbX<sub>3</sub>; X = Cl, Br, I) nanocrystals showing intense band-edge emission and high photoluminescence quantum yield are known to be a potential candidate for application in optoelectronic devices. However, controlling toxicity due to the presence of Pb<sup>2+</sup>in lead-based halide perovskites is a major challenge for the environment that needs to be tackled cautiously. In this work, we have partially replaced Pb<sup>2+</sup>with Mn<sup>2+</sup>ions in the CsPb(Cl/Br)<sub>3</sub>nanocrystals and investigated their impact on the structural and optical properties. The Rietveld refinement shows that CsPbCl<sub>2</sub>Br nanocrystals possess a cubic crystal structure with<i>Pm</i>3̅<i>m</i>space group, the Mn<sup>2+</sup>doping results in the contraction of the unit cell. The CsPb(Cl/Br)<sub>3</sub>: Mn nanocrystals show a substantial change in the optical properties with an additional emission band at ∼588 nm through a d-d transition, changing the emission color from blue to pink. Here, a didodecyldimethylammonium bromide (DDAB) ligand that triggers both anion and ligand exchange in the CsPb(Cl/Br)<sub>3</sub>: Mn nanocrystals have been used to regulate the exchange reaction and tune the emission color of halide perovskites by changing the peak position and the PL intensities of band-edge and Mn<sup>2+</sup>defect states. We have also shown that oleic acid helps in the desorption of oleylamine capping from the CsPb(Cl/Br)<sub>3</sub>: Mn nanocrystal surfaces and DDAB, resulting in the substitution of Cl<sup>-</sup>with Br<sup>-</sup>as well as provides capping with shorter branched length ligand which led to increase in the overall PL intensity by many folds.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1088/2050-6120/ad64a9
Sakuya Mori, Christopher R Hall, Siobhan J Bradley, Trevor A Smith
Wines are complex mixtures of chemical compounds with broad and overlapping absorption and emission spectral features in the UV and visible spectral regions, making them challenging to study with conventional optical spectroscopic techniques. Multidimensional fluorescence spectroscopies correlate fluorescence spectra with other degrees of freedom, and have proven useful for studying complex molecular systems, offering a pathway for the analysis of wines utilising their inherent fluorescence. Here we employ steady-state excitation-emission matrix (EEM) and time-resolved fluorescence spectral measurements to investigate representative commercial white and red wine samples and a fluorescent 'model' wine base. Combining these multidimensional measurement methods provides information on the emission characteristics of the components that wines contain. This investigation illustrates the potential for multidimensional fluorescence techniques as diagnostic tools for the wine industry.
{"title":"Multidimensional fluorescence spectroscopy of wine using synchronous excitation/emission matrices and time-resolved fluorescence interferometric detection.","authors":"Sakuya Mori, Christopher R Hall, Siobhan J Bradley, Trevor A Smith","doi":"10.1088/2050-6120/ad64a9","DOIUrl":"10.1088/2050-6120/ad64a9","url":null,"abstract":"<p><p>Wines are complex mixtures of chemical compounds with broad and overlapping absorption and emission spectral features in the UV and visible spectral regions, making them challenging to study with conventional optical spectroscopic techniques. Multidimensional fluorescence spectroscopies correlate fluorescence spectra with other degrees of freedom, and have proven useful for studying complex molecular systems, offering a pathway for the analysis of wines utilising their inherent fluorescence. Here we employ steady-state excitation-emission matrix (EEM) and time-resolved fluorescence spectral measurements to investigate representative commercial white and red wine samples and a fluorescent 'model' wine base. Combining these multidimensional measurement methods provides information on the emission characteristics of the components that wines contain. This investigation illustrates the potential for multidimensional fluorescence techniques as diagnostic tools for the wine industry.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141633929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.1088/2050-6120/ad63f5
Parvez Alam, Ndege Simisi Clovis, Ajay Kumar Chand, Mohammad Firoz Khan, Sobhan Sen
Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored. In this study, we investigate the impact of molecular crowding agents (glucose, sucrose, and ficoll 70) at physiologically relevant concentrations (20% w/v) on the association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with human telomeric antiparallel-GqDNA. We utilized fluorescence correlation spectroscopy (FCS) along with other techniques. Our findings reveal that crowding agents decrease the binding affinity of CV to GqDNA, with the most significant effect-a nearly three-fold decrease-observed with ficoll 70. FCS measurements indicate that this decrease is primarily due to a viscosity-induced slowdown of ligand association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by smaller crowders, with only small effect observed in presence of ficoll 70 due to direct but weak interaction between the ligand and ficoll. These results along with previously reported data provide valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved mechanism of saccharide crowder influence, regardless of variations in GqDNA structure and ligand binding mode. This underscores the importance of considering crowding effects in the design and development of GqDNA-targeted drugs for potential cancer treatment.
{"title":"Effect of molecular crowders on ligand binding kinetics with G-quadruplex DNA probed by fluorescence correlation spectroscopy.","authors":"Parvez Alam, Ndege Simisi Clovis, Ajay Kumar Chand, Mohammad Firoz Khan, Sobhan Sen","doi":"10.1088/2050-6120/ad63f5","DOIUrl":"10.1088/2050-6120/ad63f5","url":null,"abstract":"<p><p>Guanine-rich single-stranded DNA folds into G-quadruplex DNA (GqDNA) structures, which play crucial roles in various biological processes. These structures are also promising targets for ligands, potentially inducing antitumor effects. While thermodynamic parameters of ligand/DNA interactions are well-studied, the kinetics of ligand interaction with GqDNA, particularly in cell-like crowded environments, remain less explored. In this study, we investigate the impact of molecular crowding agents (glucose, sucrose, and ficoll 70) at physiologically relevant concentrations (20% w/v) on the association and dissociation rates of the benzophenoxazine-core based ligand, cresyl violet (CV), with human telomeric antiparallel-GqDNA. We utilized fluorescence correlation spectroscopy (FCS) along with other techniques. Our findings reveal that crowding agents decrease the binding affinity of CV to GqDNA, with the most significant effect-a nearly three-fold decrease-observed with ficoll 70. FCS measurements indicate that this decrease is primarily due to a viscosity-induced slowdown of ligand association in the crowded environment. Interestingly, dissociation rates remain largely unaffected by smaller crowders, with only small effect observed in presence of ficoll 70 due to direct but weak interaction between the ligand and ficoll. These results along with previously reported data provide valuable insights into ligand/GqDNA interactions in cellular contexts, suggesting a conserved mechanism of saccharide crowder influence, regardless of variations in GqDNA structure and ligand binding mode. This underscores the importance of considering crowding effects in the design and development of GqDNA-targeted drugs for potential cancer treatment.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-23DOI: 10.1088/2050-6120/ad5e5b
Bong Lee, Luca Ceresa, Danh Pham, Joseph Kimball, Emma Alexander, Xuan Ye, Ignacy Gryczynski, Zygmunt Gryczynski
Continuous in-line detection and process monitoring are essential for industrial, analytical, and biomedical applications. Lightweight, highly flexible, and low-cost fiber optics enable the construction of compact and robust hand-held devices forin situchemical and biological species analysis in both industrial and biomedicalin vitro/in vivodetection. Despite the broad range of fiber-optic based applications, we lack a good understanding of the parameters that govern the efficiency of light collection or the sensitivity of detection. Consequently, comparing samples of different optical density and/or geometry becomes challenging and can lead to misinterpretation of results; especially when we lack the approaches necessary to correct the detected signal (spectra) for artifacts such as inner-filter effect or scattering. Hence, in this work, we discuss factors affecting the signal detected by the fiber optic in the bare and lens-coupled flat-tipped configurations that lead to signal/spectral distortions. We also present a simple generic model describing the excitation profile and emission collection efficiency that we verify with experimental data. Understanding the principles governing the signal collected by the fiber will provide rationales for correcting the measured emission spectra and recovering the true emission profile of optically dense samples.
{"title":"Fiber-optics based fluorescence detection. Part I: Basic concepts.","authors":"Bong Lee, Luca Ceresa, Danh Pham, Joseph Kimball, Emma Alexander, Xuan Ye, Ignacy Gryczynski, Zygmunt Gryczynski","doi":"10.1088/2050-6120/ad5e5b","DOIUrl":"10.1088/2050-6120/ad5e5b","url":null,"abstract":"<p><p>Continuous in-line detection and process monitoring are essential for industrial, analytical, and biomedical applications. Lightweight, highly flexible, and low-cost fiber optics enable the construction of compact and robust hand-held devices for<i>in situ</i>chemical and biological species analysis in both industrial and biomedical<i>in vitro</i>/<i>in vivo</i>detection. Despite the broad range of fiber-optic based applications, we lack a good understanding of the parameters that govern the efficiency of light collection or the sensitivity of detection. Consequently, comparing samples of different optical density and/or geometry becomes challenging and can lead to misinterpretation of results; especially when we lack the approaches necessary to correct the detected signal (spectra) for artifacts such as inner-filter effect or scattering. Hence, in this work, we discuss factors affecting the signal detected by the fiber optic in the bare and lens-coupled flat-tipped configurations that lead to signal/spectral distortions. We also present a simple generic model describing the excitation profile and emission collection efficiency that we verify with experimental data. Understanding the principles governing the signal collected by the fiber will provide rationales for correcting the measured emission spectra and recovering the true emission profile of optically dense samples.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":2.4,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141492605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-17DOI: 10.1088/2050-6120/ad5415
Frank B Peters, Andreas O Rapp
This technical note presents a device to diminish scattering signal in front-face fluorescence spectra while obtaining fluorescence signal. The beam path in a commercial fluorescence spectrometer was modified by two deflecting mirrors, leading reflections away from the sensor. This light path modifying (LPM) device was tested with two fluid and three solid substances, where the scattering-to-fluorescence ratio improved by a factor of 1.7 to 7.6. The spectra obtained with the LPM were much clearer, and distortion of the fluorescence peaks was avoided. Scans of quinine sulphate complied well with reference spectra.
{"title":"A simple light path modifying device to reduce scattering in front-face fluorescence spectra.","authors":"Frank B Peters, Andreas O Rapp","doi":"10.1088/2050-6120/ad5415","DOIUrl":"10.1088/2050-6120/ad5415","url":null,"abstract":"<p><p>This technical note presents a device to diminish scattering signal in front-face fluorescence spectra while obtaining fluorescence signal. The beam path in a commercial fluorescence spectrometer was modified by two deflecting mirrors, leading reflections away from the sensor. This light path modifying (LPM) device was tested with two fluid and three solid substances, where the scattering-to-fluorescence ratio improved by a factor of 1.7 to 7.6. The spectra obtained with the LPM were much clearer, and distortion of the fluorescence peaks was avoided. Scans of quinine sulphate complied well with reference spectra.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141248359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-14DOI: 10.1088/2050-6120/ad5490
Panpan Chen, Zhigang Niu, Eenju Wang
Most luminophores often suffer from the problem of aggregation-caused quenching (ACQ) or fluorescence disappearance in dilute solution. It is significant to bridge the gap between ACQ and AIE. In this work, a facile but effective strategy was proposed for the fabrication of always-on luminophores based on the excited state intramolecular proton transfer (ESIPT) mechanism, and six luminophores emitting bright fluorescence in solution, aggregation and solid states were synthesized from 5-tert-butyl-2-hydroxyisophthalaldehyde. All these ESIPT systems show only keto emission owing to their congested structures which block the breakage of intramolecular hydrogen bond (O-H⋯N) by solvation, and subsequently make enol emission impossible. Three of these luminophores are prone to convert into the corresponding phenolate anions emitting blue-shifted emission, which enable them to sense pH variation in the weakly basic range. Furthermore, white-light emission was achieved by combining two of them which show complementary-color fluorescence, and one of them was utilized for bioimaging of living Hela cells and the high-resolution image was obtained.
{"title":"Bright ESIPT emission from 2,6-di(thiazol/oxazol/imidazol-2-yl)phenol derivatives in solution, aggregation and solid states.","authors":"Panpan Chen, Zhigang Niu, Eenju Wang","doi":"10.1088/2050-6120/ad5490","DOIUrl":"10.1088/2050-6120/ad5490","url":null,"abstract":"<p><p>Most luminophores often suffer from the problem of aggregation-caused quenching (ACQ) or fluorescence disappearance in dilute solution. It is significant to bridge the gap between ACQ and AIE. In this work, a facile but effective strategy was proposed for the fabrication of always-on luminophores based on the excited state intramolecular proton transfer (ESIPT) mechanism, and six luminophores emitting bright fluorescence in solution, aggregation and solid states were synthesized from 5-tert-butyl-2-hydroxyisophthalaldehyde. All these ESIPT systems show only keto emission owing to their congested structures which block the breakage of intramolecular hydrogen bond (O-H⋯N) by solvation, and subsequently make enol emission impossible. Three of these luminophores are prone to convert into the corresponding phenolate anions emitting blue-shifted emission, which enable them to sense pH variation in the weakly basic range. Furthermore, white-light emission was achieved by combining two of them which show complementary-color fluorescence, and one of them was utilized for bioimaging of living Hela cells and the high-resolution image was obtained.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141262385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-05DOI: 10.1088/2050-6120/ad5075
Mohd Azam, Vineet Kumar Rai, Savidh Khan, K Singh
This paper reports the effect of incorporation of Yb3+ions on the frequency downconversion luminescence and thermal properties of triply ionised Ho3+doped zinc tellurite (TZ) glasses. The photoluminescence spectra of both the Ho3+/Yb3+doped and codoped glasses have been recorded and observed a green emission band corresponding to the5F4,5S2→5I8(∼550 nm) transition upon various excitations. In the downconversion (DC) emission process, the back energy transfer (BET) mechanism from Ho3+ions to Yb3+ions has also been explored. The colour emitted in the downconversion process is found to be non-tunable at different excitations. Thus, the Ho3+:TZ glass can be utilised for non-colour tunable optical devices under various UV excitations. Also the glass transition (Tg) and crystallisation (Tc) temperatures have been measured for both the doped and codoped glasses and found to be increased in the codoped glass. The singly Ho3+ions doped TZ glass shows better optical downconversion and glass forming ability.
{"title":"Influence of Yb<sup>3+</sup>/Ho<sup>3+</sup>codoping on optical and thermal properties of TeO<sub>2</sub>-ZnO glass.","authors":"Mohd Azam, Vineet Kumar Rai, Savidh Khan, K Singh","doi":"10.1088/2050-6120/ad5075","DOIUrl":"10.1088/2050-6120/ad5075","url":null,"abstract":"<p><p>This paper reports the effect of incorporation of Yb<sup>3+</sup>ions on the frequency downconversion luminescence and thermal properties of triply ionised Ho<sup>3+</sup>doped zinc tellurite (TZ) glasses. The photoluminescence spectra of both the Ho<sup>3+</sup>/Yb<sup>3+</sup>doped and codoped glasses have been recorded and observed a green emission band corresponding to the<sup>5</sup>F<sub>4</sub>,<sup>5</sup>S<sub>2</sub>→<sup>5</sup>I<sub>8</sub>(∼550 nm) transition upon various excitations. In the downconversion (DC) emission process, the back energy transfer (BET) mechanism from Ho<sup>3+</sup>ions to Yb<sup>3+</sup>ions has also been explored. The colour emitted in the downconversion process is found to be non-tunable at different excitations. Thus, the Ho<sup>3+</sup>:TZ glass can be utilised for non-colour tunable optical devices under various UV excitations. Also the glass transition (T<sub>g</sub>) and crystallisation (T<sub>c</sub>) temperatures have been measured for both the doped and codoped glasses and found to be increased in the codoped glass. The singly Ho<sup>3+</sup>ions doped TZ glass shows better optical downconversion and glass forming ability.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141093664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.
{"title":"Fluorescence in depth: integration of spectroscopy and imaging with Raman, IR, and CD for advanced research.","authors":"Lida Aeindartehran, Zahra Sadri, Fateme Rahimi, Tahereh Alinejad","doi":"10.1088/2050-6120/ad46e6","DOIUrl":"10.1088/2050-6120/ad46e6","url":null,"abstract":"<p><p>Fluorescence spectroscopy serves as a vital technique for studying the interaction between light and fluorescent molecules. It encompasses a range of methods, each presenting unique advantages and applications. This technique finds utility in various chemical studies. This review discusses Fluorescence spectroscopy, its branches such as Time-Resolved Fluorescence Spectroscopy (TRFS) and Fluorescence Lifetime Imaging Microscopy (FLIM), and their integration with other spectroscopic methods, including Raman, Infrared (IR), and Circular Dichroism (CD) spectroscopies. By delving into these methods, we aim to provide a comprehensive understanding of the capabilities and significance of fluorescence spectroscopy in scientific research, highlighting its diverse applications and the enhanced understanding it brings when combined with other spectroscopic methods. This review looks at each technique's unique features and applications. It discusses the prospects of their combined use in advancing scientific understanding and applications across various domains.</p>","PeriodicalId":18596,"journal":{"name":"Methods and Applications in Fluorescence","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}