ST3GalIV drives SLeX biosynthesis in gastrointestinal cancer cells and associates with cancer cell motility.

IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Glycoconjugate Journal Pub Date : 2023-08-01 DOI:10.1007/s10719-023-10113-y
Ana F Costa, Emanuel Senra, Isabel Faria-Ramos, Andreia Teixeira, João Morais, Mariana Pacheco, Celso A Reis, Catarina Gomes
{"title":"ST3GalIV drives SLeX biosynthesis in gastrointestinal cancer cells and associates with cancer cell motility.","authors":"Ana F Costa,&nbsp;Emanuel Senra,&nbsp;Isabel Faria-Ramos,&nbsp;Andreia Teixeira,&nbsp;João Morais,&nbsp;Mariana Pacheco,&nbsp;Celso A Reis,&nbsp;Catarina Gomes","doi":"10.1007/s10719-023-10113-y","DOIUrl":null,"url":null,"abstract":"<p><p>Expression of sialyl Lewis X (SLeX) is a well-documented event during malignant transformation of cancer cells, and largely associates with their invasive and metastatic properties. Glycoproteins and glycolipids are the main carriers of SLeX, whose biosynthesis is known to be performed by different glycosyltransferases, namely by the family of β-galactoside-α2,3-sialyltransferases (ST3Gals). In this study, we sought to elucidate the role of ST3GalIV in the biosynthesis of SLeX and in malignant properties of gastrointestinal (GI) cancer cells. By immunofluorescent screening, we selected SLeX-positive GI cancer cell lines and silenced ST3GalIV expression via CRISPR/Cas9. Flow cytometry, immunofluorescence and western blot analysis showed that ST3GalIV KO efficiently impaired SLeX expression in most cancer cell lines, with the exception of the colon cancer cell line LS174T. The impact of ST3GalIV KO in the biosynthesis of SLeX isomer SLeA and non sialylated Lewis X and A were also evaluated and overall, ST3GalIV KO led to a decreased expression of SLeA and an increased expression in both LeX and LeA. In addition, the abrogation of SLeX on GI cancer cells led to a reduction in cell motility. Furthermore, ST3GalVI KO was performed in LS174T ST3GalIV KO cells, resulting in the complete abolishment of SLeX expression and consequent reduced motility capacity of those cells. Overall, these findings portray ST3GalIV as the main, but not the only, enzyme driving the biosynthesis of SLeX in GI cancer cells, with a functional impact on cancer cell motility.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10335957/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycoconjugate Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10719-023-10113-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Expression of sialyl Lewis X (SLeX) is a well-documented event during malignant transformation of cancer cells, and largely associates with their invasive and metastatic properties. Glycoproteins and glycolipids are the main carriers of SLeX, whose biosynthesis is known to be performed by different glycosyltransferases, namely by the family of β-galactoside-α2,3-sialyltransferases (ST3Gals). In this study, we sought to elucidate the role of ST3GalIV in the biosynthesis of SLeX and in malignant properties of gastrointestinal (GI) cancer cells. By immunofluorescent screening, we selected SLeX-positive GI cancer cell lines and silenced ST3GalIV expression via CRISPR/Cas9. Flow cytometry, immunofluorescence and western blot analysis showed that ST3GalIV KO efficiently impaired SLeX expression in most cancer cell lines, with the exception of the colon cancer cell line LS174T. The impact of ST3GalIV KO in the biosynthesis of SLeX isomer SLeA and non sialylated Lewis X and A were also evaluated and overall, ST3GalIV KO led to a decreased expression of SLeA and an increased expression in both LeX and LeA. In addition, the abrogation of SLeX on GI cancer cells led to a reduction in cell motility. Furthermore, ST3GalVI KO was performed in LS174T ST3GalIV KO cells, resulting in the complete abolishment of SLeX expression and consequent reduced motility capacity of those cells. Overall, these findings portray ST3GalIV as the main, but not the only, enzyme driving the biosynthesis of SLeX in GI cancer cells, with a functional impact on cancer cell motility.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ST3GalIV驱动胃肠道癌细胞的SLeX生物合成并与癌细胞运动相关。
sialyl Lewis X (SLeX)的表达在癌细胞的恶性转化过程中是一个有充分证据的事件,并且在很大程度上与癌细胞的侵袭性和转移性有关。糖蛋白和糖脂是SLeX的主要载体,其生物合成是由不同的糖基转移酶进行的,即β-半乳糖苷-α2,3-唾液基转移酶(st3gal)家族。在这项研究中,我们试图阐明ST3GalIV在SLeX生物合成和胃肠道(GI)癌细胞恶性特性中的作用。通过免疫荧光筛选,我们选择了slex阳性的胃肠道癌细胞系,并通过CRISPR/Cas9沉默ST3GalIV的表达。流式细胞术、免疫荧光和western blot分析显示,ST3GalIV KO在除结肠癌细胞系LS174T外的大多数癌细胞系中有效地抑制了SLeX的表达。我们还评估了ST3GalIV KO对SLeX异构体SLeA和非唾液化Lewis X和A的生物合成的影响,总体而言,ST3GalIV KO导致SLeA表达减少,LeX和LeA表达增加。此外,在胃肠道癌细胞上废止SLeX导致细胞运动性降低。此外,在LS174T ST3GalVI KO细胞中进行ST3GalVI KO,导致SLeX表达完全消除,从而降低了这些细胞的运动能力。总的来说,这些发现表明ST3GalIV是驱动胃肠道癌细胞中SLeX生物合成的主要酶,但不是唯一的酶,对癌细胞运动具有功能影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Glycoconjugate Journal
Glycoconjugate Journal 生物-生化与分子生物学
CiteScore
6.00
自引率
3.30%
发文量
63
审稿时长
1 months
期刊介绍: Glycoconjugate Journal publishes articles and reviews on all areas concerned with: function, composition, structure, biosynthesis, degradation, interactions, recognition and chemo-enzymatic synthesis of glycoconjugates (glycoproteins, glycolipids, oligosaccharides, polysaccharides and proteoglycans), biochemistry, molecular biology, biotechnology, immunology and cell biology of glycoconjugates, aspects related to disease processes (immunological, inflammatory, arthritic infections, metabolic disorders, malignancy, neurological disorders), structural and functional glycomics, glycoimmunology, glycovaccines, organic synthesis of glycoconjugates and the development of methodologies if biologically relevant, glycosylation changes in disease if focused on either the discovery of a novel disease marker or the improved understanding of some basic pathological mechanism, articles on the effects of toxicological agents (alcohol, tobacco, narcotics, environmental agents) on glycosylation, and the use of glycotherapeutics. Glycoconjugate Journal is the official journal of the International Glycoconjugate Organization, which is responsible for organizing the biennial International Symposia on Glycoconjugates.
期刊最新文献
Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis. RACK1 inhibits ferroptosis of cervical cancer by enhancing SLC7A11 core-fucosylation. Site-directed mutagenesis leads to the optimized transglycosylation activity of endo-beta-N-acetylglucosaminidase from Trypanosoma brucei. Association between O-GlcNAc levels and platelet function in obese insulin-resistant subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1