首页 > 最新文献

Glycoconjugate Journal最新文献

英文 中文
Processing of N-glycans in the ER and Golgi influences the production of surface sialylated glycoRNA. ER 和高尔基体中 N-聚糖的加工会影响表面糖基化的 glycoRNA 的产生。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-12 DOI: 10.1007/s10719-024-10171-w
Yi-Shi Liu, Yu-Long Miao, Yue Dou, Ze-Hui Yang, Wenhao Sun, Xiaoman Zhou, Zijie Li, Nakanishi Hideki, Xiao-Dong Gao, Morihisa Fujita

Glycoconjugates, including glycans on proteins and lipids, have obtained significant attention due to their critical roles in both intracellular and intercellular biological functions and processes. Notably, recent discoveries have revealed the presence of glycosylated RNAs (glycoRNAs) on cell surfaces. Despite the well-characterized roles of RNA modifications, RNA glycosylation remains relatively unexplored. In this study, we investigate the relationship between N-glycosylation and RNA glycosylation. Using a recombinant Siglec11-Fc as a probe, we detected surface sialylated glycoRNAs in human cell lines and identified their dependency on the catalytic isoforms of the oligosaccharyltransferase (OST) complex, implicating STT3A-dependent protein glycosylation as a predominant contributor for affecting indirect generation of glycoRNAs. Additionally, perturbations in N-glycan biosynthesis pathways or changes in N-glycan structure impact surface sialylated glycoRNA levels, indicating a regulatory role of glycan metabolic pathways in RNA glycosylation. Together, our results underscore the intricate relationship between protein N-glycosylation and processing and RNA biology.

糖类共轭物,包括蛋白质和脂质上的聚糖,因其在细胞内和细胞间生物功能和过程中的关键作用而备受关注。值得注意的是,最近的发现揭示了细胞表面存在糖基化的 RNA(glycoRNA)。尽管 RNA 修饰的作用已被充分描述,但 RNA 糖基化的研究仍相对较少。在本研究中,我们研究了 N-糖基化与 RNA 糖基化之间的关系。利用重组 Siglec11-Fc 作为探针,我们在人细胞系中检测到了表面糖基化的糖基化 RNA,并确定了它们对寡糖基转移酶(OST)复合物催化异构体的依赖性,这表明 STT3A 依赖性蛋白糖基化是影响糖基化 RNA 间接生成的主要因素。此外,N-聚糖生物合成途径的扰动或 N-聚糖结构的变化也会影响表面糖基化的 glycoRNA 水平,这表明糖代谢途径在 RNA 糖基化中起着调控作用。总之,我们的研究结果强调了蛋白质 N-糖基化和加工与 RNA 生物学之间错综复杂的关系。
{"title":"Processing of N-glycans in the ER and Golgi influences the production of surface sialylated glycoRNA.","authors":"Yi-Shi Liu, Yu-Long Miao, Yue Dou, Ze-Hui Yang, Wenhao Sun, Xiaoman Zhou, Zijie Li, Nakanishi Hideki, Xiao-Dong Gao, Morihisa Fujita","doi":"10.1007/s10719-024-10171-w","DOIUrl":"https://doi.org/10.1007/s10719-024-10171-w","url":null,"abstract":"<p><p>Glycoconjugates, including glycans on proteins and lipids, have obtained significant attention due to their critical roles in both intracellular and intercellular biological functions and processes. Notably, recent discoveries have revealed the presence of glycosylated RNAs (glycoRNAs) on cell surfaces. Despite the well-characterized roles of RNA modifications, RNA glycosylation remains relatively unexplored. In this study, we investigate the relationship between N-glycosylation and RNA glycosylation. Using a recombinant Siglec11-Fc as a probe, we detected surface sialylated glycoRNAs in human cell lines and identified their dependency on the catalytic isoforms of the oligosaccharyltransferase (OST) complex, implicating STT3A-dependent protein glycosylation as a predominant contributor for affecting indirect generation of glycoRNAs. Additionally, perturbations in N-glycan biosynthesis pathways or changes in N-glycan structure impact surface sialylated glycoRNA levels, indicating a regulatory role of glycan metabolic pathways in RNA glycosylation. Together, our results underscore the intricate relationship between protein N-glycosylation and processing and RNA biology.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142618728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. 更正:从与 Fc 结构域融合的不依赖阳离子的甘露糖-6-磷酸受体中生成结构域 9。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 DOI: 10.1007/s10719-024-10170-x
Yu-He Tang, Yi-Shi Liu, Morihisa Fujita
{"title":"Correction: Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain.","authors":"Yu-He Tang, Yi-Shi Liu, Morihisa Fujita","doi":"10.1007/s10719-024-10170-x","DOIUrl":"https://doi.org/10.1007/s10719-024-10170-x","url":null,"abstract":"","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain. 从与 Fc 结构域融合的不依赖阳离子的甘露糖-6-磷酸受体中生成结构域 9。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-09 DOI: 10.1007/s10719-024-10169-4
Yu-He Tang, Yi-Shi Liu, Morihisa Fujita

Lysosomal storage diseases (LSDs) are genetic disorders caused by mutations in lysosomal enzymes, lysosomal membrane proteins or genes related to intracellular transport that result in impaired lysosomal function. Currently, the primary treatment for several LSDs is enzyme replacement therapy (ERT), which involves intravenous administration of the deficient lysosomal enzymes to ameliorate symptoms. The efficacy of ERT largely depends on the mannose-6-phosphate (M6P) modification of the N-glycans associated with the enzyme, as M6P is a marker for the recognition and trafficking of lysosomal enzymes. In cells, N-glycan processing and M6P modification occur in the endoplasmic reticulum and Golgi apparatus. This is a complex process involving multiple enzymes. In the trans-Golgi network (TGN), M6P-modified enzymes are recognized by the cation-independent mannose-6-phosphate receptor (CIMPR) and transported to the lysosome to exert their activities. In this study, we used the 9th domain of CIMPR, which exhibits a high affinity for M6P binding, and fused it with the Fc domain of human immunoglobulin G1 (IgG1). The resulting fusion protein specifically binds to M6P-modified proteins. This provides a tool for the rapid detection and concentration of M6P-containing recombinant enzymes to assess the effectiveness of ERT. The advantages of this approach include its high specificity and sensitivity and may lead to the development of new treatments for LSDs.

溶酶体贮积病(LSDs)是由溶酶体酶、溶酶体膜蛋白或与细胞内转运有关的基因突变导致溶酶体功能受损而引起的遗传性疾病。目前,几种溶酶体疾病的主要治疗方法是酶替代疗法(ERT),即通过静脉注射缺乏的溶酶体酶来改善症状。ERT的疗效在很大程度上取决于与酶相关的N-糖的6-磷酸甘露糖(M6P)修饰,因为M6P是溶酶体酶识别和运输的标志。在细胞中,N-糖的加工和 M6P 的修饰发生在内质网和高尔基体。这是一个涉及多种酶的复杂过程。在跨高尔基体网络(TGN)中,M6P修饰的酶被阳离子无关的6-磷酸甘露糖受体(CIMPR)识别,并被转运到溶酶体以发挥其活性。在这项研究中,我们使用了对 M6P 结合具有高亲和力的 CIMPR 第 9 结构域,并将其与人免疫球蛋白 G1(IgG1)的 Fc 结构域融合。由此产生的融合蛋白能与 M6P 修饰的蛋白质特异性结合。这为快速检测和浓缩含 M6P 的重组酶提供了一种工具,可用于评估 ERT 的有效性。这种方法的优点包括特异性强、灵敏度高,可能有助于开发治疗 LSD 的新方法。
{"title":"Production of Domain 9 from the cation-independent mannose-6-phosphate receptor fused with an Fc domain.","authors":"Yu-He Tang, Yi-Shi Liu, Morihisa Fujita","doi":"10.1007/s10719-024-10169-4","DOIUrl":"10.1007/s10719-024-10169-4","url":null,"abstract":"<p><p>Lysosomal storage diseases (LSDs) are genetic disorders caused by mutations in lysosomal enzymes, lysosomal membrane proteins or genes related to intracellular transport that result in impaired lysosomal function. Currently, the primary treatment for several LSDs is enzyme replacement therapy (ERT), which involves intravenous administration of the deficient lysosomal enzymes to ameliorate symptoms. The efficacy of ERT largely depends on the mannose-6-phosphate (M6P) modification of the N-glycans associated with the enzyme, as M6P is a marker for the recognition and trafficking of lysosomal enzymes. In cells, N-glycan processing and M6P modification occur in the endoplasmic reticulum and Golgi apparatus. This is a complex process involving multiple enzymes. In the trans-Golgi network (TGN), M6P-modified enzymes are recognized by the cation-independent mannose-6-phosphate receptor (CIMPR) and transported to the lysosome to exert their activities. In this study, we used the 9th domain of CIMPR, which exhibits a high affinity for M6P binding, and fused it with the Fc domain of human immunoglobulin G<sub>1</sub> (IgG<sub>1</sub>). The resulting fusion protein specifically binds to M6P-modified proteins. This provides a tool for the rapid detection and concentration of M6P-containing recombinant enzymes to assess the effectiveness of ERT. The advantages of this approach include its high specificity and sensitivity and may lead to the development of new treatments for LSDs.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142389842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between O-GlcNAc levels and platelet function in obese insulin-resistant subjects. 肥胖的胰岛素抵抗受试者体内 O-GlcNAc 水平与血小板功能之间的关系。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-09-20 DOI: 10.1007/s10719-024-10164-9
María Teresa Hernández-Huerta, Ruth Martínez-Cruz, Laura Pérez-Campos Mayoral, María Del Socorro Pina-Canseco, Carlos Josué Solórzano-Mata, Margarito Martínez-Cruz, Itzel Patricia Vásquez Martínez, Edgar Zenteno, Luis Ángel Laguna Barrios, Carlos Alberto Matias-Cervantes, Eduardo Pérez-Campos Mayoral, Eduardo Pérez-Campos

Obesity is an epidemic associated with platelet and vascular disorders. Platelet O-GlcNAcylation has been poorly studied in obese subjects. We aimed to evaluate O-linked N-acetyl-glucosamine (O-GlcNAc) levels and platelet activity in obese insulin-resistant (ObIR) subjects. Six healthy and six insulin-resistant obese subjects with a body mass index of 22.6 kg/m2 (SD ± 2.2) and 35.6 kg/m2 (SD ± 3.8), respectively, were included. Flow cytometry was used to measure markers of platelet activity, expression of P-selectin (CD62P antibody), glycoprotein IIb/IIIa (integrins αIIbβ3 binding to PAC-1 antibody), and thrombin stimulation. O-GlcNAc was determined in the platelets of all test subjects by cytofluometry, intracellular calcium, percentage of platelet aggregation, and immunofluorescence microscopy and Western blot were used to assess O-GlcNAc and OGT (O-GlcNAc transferase) in platelets. Platelets from ObIR subjects had on average 221.4 nM intracellular calcium, 81.89% PAC-1, 22.85% CD62P, 57.48% OGT, and 66.62% O-GlcNAc, while platelets from healthy subjects had on average 719.2 nM intracellular calcium, 4.99% PAC-1, 3.17% CD62P, 18.38% OGT, and 23.41% O-GlcNAc. ObIR subjects showed lower platelet aggregation than healthy subjects, 13.83% and 54%, respectively. The results show that ObIR subjects have increased O-GlcNAc, and increased intraplatelet calcium associated with platelet hyperactivity and compared to healthy subjects, suggesting that changes in platelet protein O-GlcNAcylation and platelet activity might serve as a possible prognostic tool for insulin resistance, prediabetes and its progression to type 2 diabetes mellitus.

肥胖是一种与血小板和血管疾病相关的流行病。对肥胖者血小板 O-GlcNAcylation 的研究很少。我们的目的是评估肥胖胰岛素抵抗(ObIR)受试者的 O-连锁 N-乙酰葡糖胺(O-GlcNAc)水平和血小板活性。研究对象包括六名健康肥胖者和六名胰岛素抵抗性肥胖者,体重指数分别为 22.6 kg/m2 (SD ± 2.2) 和 35.6 kg/m2 (SD ± 3.8)。流式细胞术用于测量血小板活性、P-选择素表达(CD62P 抗体)、糖蛋白 IIb/IIIa(整合素 αⅡbβ3 与 PAC-1 抗体结合)和凝血酶刺激的标志物。所有受试者血小板中的 O-GlcNAc(O-GlcNAc)均通过细胞流式细胞仪测定,细胞内钙、血小板聚集百分比、免疫荧光显微镜和 Western 印迹均用于评估血小板中的 O-GlcNAc(O-GlcNAc)和 OGT(O-GlcNAc 转移酶)。ObIR受试者的血小板平均有221.4 nM的细胞内钙、81.89%的PAC-1、22.85%的CD62P、57.48%的OGT和66.62%的O-GlcNAc,而健康受试者的血小板平均有719.2 nM的细胞内钙、4.99%的PAC-1、3.17%的CD62P、18.38%的OGT和23.41%的O-GlcNAc。与健康受试者相比,ObIR 受试者的血小板聚集率较低,分别为 13.83% 和 54%。结果表明,与健康受试者相比,ObIR受试者的O-GlcNAc增加,与血小板活性亢进相关的血小板内钙增加,这表明血小板蛋白O-GlcNAcylation和血小板活性的变化可作为胰岛素抵抗、糖尿病前期及其进展为2型糖尿病的一种可能的预后工具。
{"title":"Association between O-GlcNAc levels and platelet function in obese insulin-resistant subjects.","authors":"María Teresa Hernández-Huerta, Ruth Martínez-Cruz, Laura Pérez-Campos Mayoral, María Del Socorro Pina-Canseco, Carlos Josué Solórzano-Mata, Margarito Martínez-Cruz, Itzel Patricia Vásquez Martínez, Edgar Zenteno, Luis Ángel Laguna Barrios, Carlos Alberto Matias-Cervantes, Eduardo Pérez-Campos Mayoral, Eduardo Pérez-Campos","doi":"10.1007/s10719-024-10164-9","DOIUrl":"10.1007/s10719-024-10164-9","url":null,"abstract":"<p><p>Obesity is an epidemic associated with platelet and vascular disorders. Platelet O-GlcNAcylation has been poorly studied in obese subjects. We aimed to evaluate O-linked N-acetyl-glucosamine (O-GlcNAc) levels and platelet activity in obese insulin-resistant (ObIR) subjects. Six healthy and six insulin-resistant obese subjects with a body mass index of 22.6 kg/m<sup>2</sup> (SD ± 2.2) and 35.6 kg/m<sup>2</sup> (SD ± 3.8), respectively, were included. Flow cytometry was used to measure markers of platelet activity, expression of P-selectin (CD62P antibody), glycoprotein IIb/IIIa (integrins αIIbβ3 binding to PAC-1 antibody), and thrombin stimulation. O-GlcNAc was determined in the platelets of all test subjects by cytofluometry, intracellular calcium, percentage of platelet aggregation, and immunofluorescence microscopy and Western blot were used to assess O-GlcNAc and OGT (O-GlcNAc transferase) in platelets. Platelets from ObIR subjects had on average 221.4 nM intracellular calcium, 81.89% PAC-1, 22.85% CD62P, 57.48% OGT, and 66.62% O-GlcNAc, while platelets from healthy subjects had on average 719.2 nM intracellular calcium, 4.99% PAC-1, 3.17% CD62P, 18.38% OGT, and 23.41% O-GlcNAc. ObIR subjects showed lower platelet aggregation than healthy subjects, 13.83% and 54%, respectively. The results show that ObIR subjects have increased O-GlcNAc, and increased intraplatelet calcium associated with platelet hyperactivity and compared to healthy subjects, suggesting that changes in platelet protein O-GlcNAcylation and platelet activity might serve as a possible prognostic tool for insulin resistance, prediabetes and its progression to type 2 diabetes mellitus.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"291-300"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142284412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review. 连接蛋白-聚糖相互作用:用于生物识别和生物改变的癌症相关聚糖综合编目:综述。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-09-02 DOI: 10.1007/s10719-024-10161-y
Maruti J Gurav, J Manasa, Ashwini S Sanji, Prasanna H Megalamani, Vishwanath B Chachadi

This comprehensive review meticulously compiles data on an array of lectins and their interactions with different cancer types through specific glycans. Crucially, it establishes the link between aberrant glycosylation and cancer types. This repository of lectin-defined glycan signatures, assumes paramount importance in the realm of cancer and its dynamic nature. Cancer, known for its remarkable heterogeneity and individualized behaviour, can be better understood through these glycan signatures. The current review discusses the important lectins and their carbohydrate specificities, especially recognizing glycans of cancer origin. The review also addresses the key aspects of differentially expressed glycans on normal and cancerous cell surfaces. Specific cancer types highlighted in this review include breast cancer, colon cancer, glioblastoma, cervical cancer, lung cancer, liver cancer, and leukaemia. The glycan profiles unveiled through this review hold the key to tailor-made treatment and precise diagnostics. It opens up avenues to explore the potential of targeting glycosyltransferases and glycosidases linked with cancer advancement and metastasis. Armed with knowledge about specific glycan expressions, researchers can design targeted therapies to modulate glycan profiles, potentially hampering the advance of this relentless disease.

这篇全面的综述细致地汇编了一系列凝集素及其通过特定聚糖与不同癌症类型相互作用的数据。最重要的是,它建立了异常糖基化与癌症类型之间的联系。这个凝集素定义的聚糖特征库在癌症领域及其动态性质中具有极其重要的意义。癌症以其显著的异质性和个体化行为而闻名,通过这些糖特征可以更好地了解癌症。本综述讨论了重要的凝集素及其碳水化合物特异性,尤其是识别癌症来源的聚糖。综述还讨论了正常细胞和癌细胞表面不同表达的聚糖的关键方面。本综述重点介绍的特定癌症类型包括乳腺癌、结肠癌、胶质母细胞瘤、宫颈癌、肺癌、肝癌和白血病。本综述揭示的聚糖图谱是量身定制治疗和精确诊断的关键。它为探索针对与癌症进展和转移有关的糖基转移酶和糖苷酶的潜力开辟了道路。有了关于特定糖表达的知识,研究人员就能设计出调节糖谱的靶向疗法,从而有可能阻止这种无情疾病的发展。
{"title":"Lectin-glycan interactions: a comprehensive cataloguing of cancer-associated glycans for biorecognition and bio-alteration: a review.","authors":"Maruti J Gurav, J Manasa, Ashwini S Sanji, Prasanna H Megalamani, Vishwanath B Chachadi","doi":"10.1007/s10719-024-10161-y","DOIUrl":"10.1007/s10719-024-10161-y","url":null,"abstract":"<p><p>This comprehensive review meticulously compiles data on an array of lectins and their interactions with different cancer types through specific glycans. Crucially, it establishes the link between aberrant glycosylation and cancer types. This repository of lectin-defined glycan signatures, assumes paramount importance in the realm of cancer and its dynamic nature. Cancer, known for its remarkable heterogeneity and individualized behaviour, can be better understood through these glycan signatures. The current review discusses the important lectins and their carbohydrate specificities, especially recognizing glycans of cancer origin. The review also addresses the key aspects of differentially expressed glycans on normal and cancerous cell surfaces. Specific cancer types highlighted in this review include breast cancer, colon cancer, glioblastoma, cervical cancer, lung cancer, liver cancer, and leukaemia. The glycan profiles unveiled through this review hold the key to tailor-made treatment and precise diagnostics. It opens up avenues to explore the potential of targeting glycosyltransferases and glycosidases linked with cancer advancement and metastasis. Armed with knowledge about specific glycan expressions, researchers can design targeted therapies to modulate glycan profiles, potentially hampering the advance of this relentless disease.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"301-322"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142106692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RACK1 inhibits ferroptosis of cervical cancer by enhancing SLC7A11 core-fucosylation. RACK1 通过增强 SLC7A11 核心-岩藻糖基化抑制宫颈癌的铁凋亡。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-10-02 DOI: 10.1007/s10719-024-10167-6
Anqi Yan, Hao Wu, Wei Jiang

Receiver for Activated C Kinase 1 (RACK1) is a highly conserved scaffold protein that can assemble multiple kinases and proteins together to form complexes, thereby regulating signal transduction process and various cellular biological processes, including cell cycle regulation, differentiation, and immune response. However, the function and mechanism of RACK1 in cervical cancer remain incompletely understood. Here we identified that RACK1 could significantly suppress cell ferroptosis in cervical cancer cells. Mechanistically, RACK1 increased the expression of FUT8 by inhibiting miR-1275, which in turn promoted the FUT8-catalyzed core-fucosylation of cystine/glutamate antiporter SLC7A11, thereby inhibiting SLC7A11 degradation and cell ferroptosis. Our data highlight the role of RACK1 in cervical cancer progression and its suppression of ferroptosis via the RACK1/miR-1275/FUT8/SLC7A11 axis, suggesting that inhibiting this pathway may be a promising therapeutic approach for patients with cervical cancer.

活化C激酶1受体(RACK1)是一种高度保守的支架蛋白,可将多种激酶和蛋白组装在一起形成复合物,从而调控信号转导过程和多种细胞生物学过程,包括细胞周期调控、分化和免疫反应。然而,人们对 RACK1 在宫颈癌中的功能和作用机制仍不甚了解。在这里,我们发现 RACK1 能显著抑制宫颈癌细胞的铁突变。从机理上讲,RACK1通过抑制miR-1275增加FUT8的表达,进而促进FUT8催化胱氨酸/谷氨酸拮抗剂SLC7A11的核心-岩藻糖基化,从而抑制SLC7A11的降解和细胞铁凋亡。我们的数据突显了RACK1在宫颈癌进展中的作用,以及它通过RACK1/miR-1275/FUT8/SLC7A11轴对铁突变的抑制作用,表明抑制这一通路可能是治疗宫颈癌患者的一种有前景的方法。
{"title":"RACK1 inhibits ferroptosis of cervical cancer by enhancing SLC7A11 core-fucosylation.","authors":"Anqi Yan, Hao Wu, Wei Jiang","doi":"10.1007/s10719-024-10167-6","DOIUrl":"10.1007/s10719-024-10167-6","url":null,"abstract":"<p><p>Receiver for Activated C Kinase 1 (RACK1) is a highly conserved scaffold protein that can assemble multiple kinases and proteins together to form complexes, thereby regulating signal transduction process and various cellular biological processes, including cell cycle regulation, differentiation, and immune response. However, the function and mechanism of RACK1 in cervical cancer remain incompletely understood. Here we identified that RACK1 could significantly suppress cell ferroptosis in cervical cancer cells. Mechanistically, RACK1 increased the expression of FUT8 by inhibiting miR-1275, which in turn promoted the FUT8-catalyzed core-fucosylation of cystine/glutamate antiporter SLC7A11, thereby inhibiting SLC7A11 degradation and cell ferroptosis. Our data highlight the role of RACK1 in cervical cancer progression and its suppression of ferroptosis via the RACK1/miR-1275/FUT8/SLC7A11 axis, suggesting that inhibiting this pathway may be a promising therapeutic approach for patients with cervical cancer.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"229-240"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142361425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis. MAPK 信号在糖磷脂相关肿瘤发生中的新作用。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-10-05 DOI: 10.1007/s10719-024-10168-5
Elora Khamrui, Sounak Banerjee, Dipanwita Das Mukherjee, Kaushik Biswas

Glycosphingolipids (GSLs) are a type of amphipathic lipid molecules consisting of hydrophobic ceramide backbone bound to carbohydrate moiety clustered in the cell surface microdomains named 'lipid rafts' and are known to participate in cell-cell communication as well as intra-cellular signaling, thereby facilitating critical normal cellular processes and functions. Over the past several decades, various GSLs have been reported to be aberrantly expressed in different cancers, many of which have been associated with their prognosis. The wide implication of MAPK signaling in controlling tumor growth, progression, and metastasis through activation of an upstream signaling cascade, often originating in the cell membrane, justifies the rationale for its plausible influence on MAPK signaling. This review highlights the role of GSLs and their metabolites in regulating different signaling pathways towards modulation of tumor cell growth, migration, and adhesion by interacting with various receptors [epidermal growth factor receptor (EGFR), and platelet derived growth factor receptor (PDGFR), and other receptor tyrosine kinases (RTKs)] leading to activation of the MAPK pathway. Furthermore, GSLs can influence the activity and localization of downstream signaling components in the MAPK pathway by regulating the activation state of kinases, which in turn, regulate the activity of MAPKs. Additionally, this review further consolidates the GSL-mediated modulation of MAPK pathway components through the regulation of gene expression. Finally, recent findings on GSL-MAPK crosstalk will be explored in this article for the identification of potential anti-cancer therapeutic targets.

糖磷脂(Glycosphingolipids,GSLs)是一种两性脂质分子,由疏水性神经酰胺骨架与碳水化合物分子结合而成,聚集在细胞表面名为 "脂筏 "的微域中,已知可参与细胞间通信和细胞内信号传递,从而促进关键的正常细胞过程和功能。在过去的几十年中,各种 GSLs 被报道在不同的癌症中异常表达,其中许多与癌症的预后有关。MAPK 信号通过激活上游信号级联(通常源自细胞膜)在控制肿瘤生长、恶化和转移方面的广泛影响,证明了 GSL 对 MAPK 信号产生影响的合理性。本综述强调了 GSLs 及其代谢物在调节不同信号通路方面的作用,它们通过与各种受体[表皮生长因子受体(EGFR)、血小板衍生生长因子受体(PDGFR)和其他受体酪氨酸激酶(RTK)]相互作用,导致 MAPK 通路的激活,从而调节肿瘤细胞的生长、迁移和粘附。此外,GSL 还能通过调节激酶的活化状态来影响 MAPK 通路中下游信号成分的活性和定位,而激酶的活化状态又反过来调节 MAPK 的活性。此外,本综述还进一步巩固了 GSL 通过调控基因表达介导的对 MAPK 通路成分的调节。最后,本文还将探讨有关 GSL-MAPK 交叉作用的最新发现,以确定潜在的抗癌治疗靶点。
{"title":"Emerging role of MAPK signaling in glycosphingolipid-associated tumorigenesis.","authors":"Elora Khamrui, Sounak Banerjee, Dipanwita Das Mukherjee, Kaushik Biswas","doi":"10.1007/s10719-024-10168-5","DOIUrl":"10.1007/s10719-024-10168-5","url":null,"abstract":"<p><p>Glycosphingolipids (GSLs) are a type of amphipathic lipid molecules consisting of hydrophobic ceramide backbone bound to carbohydrate moiety clustered in the cell surface microdomains named 'lipid rafts' and are known to participate in cell-cell communication as well as intra-cellular signaling, thereby facilitating critical normal cellular processes and functions. Over the past several decades, various GSLs have been reported to be aberrantly expressed in different cancers, many of which have been associated with their prognosis. The wide implication of MAPK signaling in controlling tumor growth, progression, and metastasis through activation of an upstream signaling cascade, often originating in the cell membrane, justifies the rationale for its plausible influence on MAPK signaling. This review highlights the role of GSLs and their metabolites in regulating different signaling pathways towards modulation of tumor cell growth, migration, and adhesion by interacting with various receptors [epidermal growth factor receptor (EGFR), and platelet derived growth factor receptor (PDGFR), and other receptor tyrosine kinases (RTKs)] leading to activation of the MAPK pathway. Furthermore, GSLs can influence the activity and localization of downstream signaling components in the MAPK pathway by regulating the activation state of kinases, which in turn, regulate the activity of MAPKs. Additionally, this review further consolidates the GSL-mediated modulation of MAPK pathway components through the regulation of gene expression. Finally, recent findings on GSL-MAPK crosstalk will be explored in this article for the identification of potential anti-cancer therapeutic targets.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"343-360"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142377775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of oligosaccharides from terminal B. pertussis LPS pentasaccharide and definition of the minimal epitope recognized by anti-pertussis antibodies. 百日咳杆菌 LPS 五糖末端寡糖的合成和抗百日咳抗体识别的最小表位的定义。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-07-24 DOI: 10.1007/s10719-024-10160-z
Guang-Wu Chen, Lina Guo, Jiasheng Huang, Haijun Ma, Sonsire Fernandez-Castillo, Jean Pierre Soubal-Mora, Yury Valdes-Balbin, Vicente Verez-Bencomo

Pertussis vaccines have been very effective in controlling whooping-cough epidemics but are ineffective in controlling circulation in older children and adults, thus facilitating the onset of future outbreaks. Antibodies against the lipopolysaccharide could reduce the carriage of the bacteria, its circulation, and transmission. The oligosaccharide fragments from the lipopolysaccharide may become a potential complement to existing vaccines in the form of protein glycoconjugates. An important step in the development of this type of vaccine is defining the minimal oligosaccharide epitope recognized by B. pertussis anti-lipopolysaccharide antibodies. This paper describes the complete synthesis of oligosaccharides containing two to five monosaccharide units corresponding to the pentasaccharide at the nonreducing end of the lipooligosaccharide and their recognition by mice and rabbit antibodies elicited against whole-cell B. pertussis. For the first time, we report that the terminal disaccharide, α-D-GlcNAcp-(1 → 4)-(2,3-di-NAc)-D-ManAp acid is the minimal structure recognized by antibodies induced by B. pertussis.

百日咳疫苗在控制百日咳流行方面非常有效,但在控制年龄较大的儿童和成人中的传播方面却效果不佳,从而助长了未来的爆发。针对脂多糖的抗体可以减少细菌的携带、循环和传播。脂多糖的寡糖片段可能以蛋白糖结合物的形式成为现有疫苗的潜在补充。开发这类疫苗的重要一步是确定百日咳杆菌抗脂多糖抗体识别的最小寡糖表位。本文描述了含有与脂寡糖非还原端五糖相对应的 2 至 5 个单糖单位的寡糖的完整合成过程,以及小鼠和家兔抗全细胞百日咳杆菌抗体对这些寡糖的识别。我们首次报道了末端二糖α-D-GlcNAcp-(1 → 4)-(2,3-di-NAc)-D-ManAp 酸是百日咳杆菌诱导的抗体所能识别的最小结构。
{"title":"Synthesis of oligosaccharides from terminal B. pertussis LPS pentasaccharide and definition of the minimal epitope recognized by anti-pertussis antibodies.","authors":"Guang-Wu Chen, Lina Guo, Jiasheng Huang, Haijun Ma, Sonsire Fernandez-Castillo, Jean Pierre Soubal-Mora, Yury Valdes-Balbin, Vicente Verez-Bencomo","doi":"10.1007/s10719-024-10160-z","DOIUrl":"10.1007/s10719-024-10160-z","url":null,"abstract":"<p><p>Pertussis vaccines have been very effective in controlling whooping-cough epidemics but are ineffective in controlling circulation in older children and adults, thus facilitating the onset of future outbreaks. Antibodies against the lipopolysaccharide could reduce the carriage of the bacteria, its circulation, and transmission. The oligosaccharide fragments from the lipopolysaccharide may become a potential complement to existing vaccines in the form of protein glycoconjugates. An important step in the development of this type of vaccine is defining the minimal oligosaccharide epitope recognized by B. pertussis anti-lipopolysaccharide antibodies. This paper describes the complete synthesis of oligosaccharides containing two to five monosaccharide units corresponding to the pentasaccharide at the nonreducing end of the lipooligosaccharide and their recognition by mice and rabbit antibodies elicited against whole-cell B. pertussis. For the first time, we report that the terminal disaccharide, α-D-GlcNAcp-(1 → 4)-(2,3-di-NAc)-D-ManAp acid is the minimal structure recognized by antibodies induced by B. pertussis.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"241-254"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141751506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Site-directed mutagenesis leads to the optimized transglycosylation activity of endo-beta-N-acetylglucosaminidase from Trypanosoma brucei. 定点突变优化了布氏锥虫内-β-N-乙酰葡糖苷酶的转糖基化活性。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-09-28 DOI: 10.1007/s10719-024-10166-7
Yi Ding, Zheng-Hui Chen, Juan Cui, Xin-Yu Ding, Xiao-Dong Gao, Ning Wang

Endo-β-N-acetylglucosaminidases (ENGases) are pivotal enzymes in the degradation and remodeling of glycoproteins, which catalyze the cleavage or formation of β-1,4-glycosidic bond between two N-acetylglucosamine (GlcNAc) residues in N-linked glycan chains. It was investigated that targeted mutations of amino acids in ENGases active site may modulate their hydrolytic and transglycosylation activities. Endo-Tb, the ENGase derived from Trypanosoma brucei, belongs to the glycoside hydrolase family 85 (GH85). Our group previously demonstrated that Endo-Tb exhibits hydrolytic activity toward high-mannose and complex type N-glycans and preliminarily confirmed its transglycosylation potential. In this study, we further optimized the transglycosylation activity of recombinant Endo-Tb by focusing on the N536A, E538A and Y576F mutants. A comparative analysis of their transglycosylation activity with that of the wild-type enzyme revealed that all mutants exhibited enhanced transglycosylation capacity. The N536A mutant exhibited the most pronounced improvement in transglycosylation activity with a significant reduction in hydrolytic activity. It is suggested that Endo-Tb N536A possesses the potential as a tool for synthesizing a wide array of glycoconjugates bearing high-mannose and complex type N-glycans.

内切-β-N-乙酰葡糖胺酶(ENGases)是降解和重塑糖蛋白的关键酶,可催化N-连接糖链中两个N-乙酰葡糖胺(GlcNAc)残基之间β-1,4-糖苷键的裂解或形成。研究发现,ENGase 活性位点氨基酸的靶向突变可能会调节其水解和转糖基化活性。Endo-Tb是来自布氏锥虫的ENG酶,属于糖苷水解酶家族85(GH85)。我们的研究小组之前证明了 Endo-Tb 对高甘露糖和复合型 N-聚糖具有水解活性,并初步证实了其转糖基化的潜力。在本研究中,我们以 N536A、E538A 和 Y576F 突变体为重点,进一步优化了重组 Endo-Tb 的转糖基化活性。对它们与野生型酶的转糖基化活性进行比较分析后发现,所有突变体都表现出更强的转糖基化能力。N536A 突变体的转糖基化活性提高最为明显,但水解活性却显著降低。这表明,Endo-Tb N536A 有潜力成为合成各种含有高甘露糖和复杂类型 N-聚糖的糖连接物的工具。
{"title":"Site-directed mutagenesis leads to the optimized transglycosylation activity of endo-beta-N-acetylglucosaminidase from Trypanosoma brucei.","authors":"Yi Ding, Zheng-Hui Chen, Juan Cui, Xin-Yu Ding, Xiao-Dong Gao, Ning Wang","doi":"10.1007/s10719-024-10166-7","DOIUrl":"10.1007/s10719-024-10166-7","url":null,"abstract":"<p><p>Endo-β-N-acetylglucosaminidases (ENGases) are pivotal enzymes in the degradation and remodeling of glycoproteins, which catalyze the cleavage or formation of β-1,4-glycosidic bond between two N-acetylglucosamine (GlcNAc) residues in N-linked glycan chains. It was investigated that targeted mutations of amino acids in ENGases active site may modulate their hydrolytic and transglycosylation activities. Endo-Tb, the ENGase derived from Trypanosoma brucei, belongs to the glycoside hydrolase family 85 (GH85). Our group previously demonstrated that Endo-Tb exhibits hydrolytic activity toward high-mannose and complex type N-glycans and preliminarily confirmed its transglycosylation potential. In this study, we further optimized the transglycosylation activity of recombinant Endo-Tb by focusing on the N536A, E538A and Y576F mutants. A comparative analysis of their transglycosylation activity with that of the wild-type enzyme revealed that all mutants exhibited enhanced transglycosylation capacity. The N536A mutant exhibited the most pronounced improvement in transglycosylation activity with a significant reduction in hydrolytic activity. It is suggested that Endo-Tb N536A possesses the potential as a tool for synthesizing a wide array of glycoconjugates bearing high-mannose and complex type N-glycans.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"279-289"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142345092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Core-fucose-specific Pholiota squarrosa lectin decreased hepatic inflammatory macrophage infiltration in steatohepatitis mice. 核心岩藻糖特异性方形岩藻凝集素可减少脂肪性肝炎小鼠肝脏炎性巨噬细胞的浸润。
IF 2.7 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-01 Epub Date: 2024-09-09 DOI: 10.1007/s10719-024-10163-w
Yoshihiro Kamada, Yui Ueda, Eriko Matsuno, Riku Matsumoto, Maaya Akita, Shinji Takamatsu, Eiji Miyoshi

Recent findings in glycobiology revealed direct evidence of the involvement of oligosaccharide changes in human diseases, including liver diseases. Fucosylation describes the attachment of a fucose residue to a glycan or glycolipid. We demonstrated that fucosylated proteins are useful serum biomarkers for nonalcoholic fatty liver disease. Among fucosyltransferases, expression of alpha-1, 6-fucosyltransferase (Fut8), which produces core fucose, is frequently elevated during the progression of human chronic liver diseases. Previously, we discovered core-fucose-specific Pholiota squarrosa lectin (PhoSL) from Japanese mushroom Sugitake. Lectins are bioactive compounds that bind to glycan specifically, and various kinds of lectin have a variety of biological functions. Using high-fat and high-cholesterol (HFHC)-fed steatohepatitic mice, we found that core fucosylation increases in hepatic inflammatory macrophages. Antibody drugs bind to specific antigens and block protein function. We hypothesized that, like antibody drugs, PhoSL could have inhibitory effects on glycoproteins involved in steatohepatitis progression. PhoSL administration dramatically decreased hepatic macrophage infiltration and liver fibrosis-related gene expression. Using mouse macrophage-like cell RAW264.7, we found that PhoSL enhanced core-fucose-mediated activation of macrophage cell death by blocking interferon-γ/signal transducer and activator of transcription 1 (STAT1) signaling. Core-fucose-mediated cell death is a mechanism for the anti-inflammatory effects and anti-fibrotic effects of PhoSL on activated macrophages in steatohepatitic liver. In addition, PhoSL provides an anti-fibrotic effect by blocking transforming growth factor-β/SMAD family member 3 signaling in hepatic stellate cells. In conclusion, we found core-fucose-specific PhoSL administration could suppress steatohepatitis progression by decreasing inflammatory macrophage infiltration and fibrotic signaling in hepatic stellate cells.

糖生物学的最新发现直接证明了寡糖变化与人类疾病(包括肝病)的关系。岩藻糖基化是指岩藻糖残基附着在聚糖或糖脂上。我们证实,岩藻糖基化蛋白质是非酒精性脂肪肝的有用血清生物标志物。在岩藻糖基转移酶中,产生核心岩藻糖的α-1,6-岩藻糖基转移酶(Fut8)的表达在人类慢性肝病的进展过程中经常升高。此前,我们从日本蘑菇 "杉蘑 "中发现了核心岩藻糖特异性方形蘑菇凝集素(PhoSL)。凝集素是与糖特异性结合的生物活性化合物,各种凝集素具有多种生物功能。我们利用高脂高胆固醇(HFHC)喂养的脂肪肝小鼠,发现肝脏炎症巨噬细胞的核心岩藻糖基化增加。抗体药物与特定抗原结合并阻断蛋白质功能。我们假设,与抗体药物一样,PhoSL 也能对参与脂肪性肝炎进展的糖蛋白产生抑制作用。服用 PhoSL 能显著减少肝巨噬细胞浸润和肝纤维化相关基因的表达。利用小鼠巨噬细胞样细胞 RAW264.7,我们发现 PhoSL 通过阻断干扰素-γ/信号转导和转录激活因子 1(STAT1)信号传导,增强了核心岩藻糖介导的巨噬细胞死亡激活。核心岩藻糖介导的细胞死亡是 PhoSL 对脂肪性肝病肝脏中活化巨噬细胞产生抗炎作用和抗纤维化作用的机制。此外,PhoSL 还能通过阻断肝星状细胞中转化生长因子-β/SMAD 家族成员 3 的信号转导来发挥抗纤维化作用。总之,我们发现核心岩藻糖特异性 PhoSL 可通过减少炎性巨噬细胞浸润和肝星状细胞中的纤维化信号传导来抑制脂肪性肝炎的进展。
{"title":"Core-fucose-specific Pholiota squarrosa lectin decreased hepatic inflammatory macrophage infiltration in steatohepatitis mice.","authors":"Yoshihiro Kamada, Yui Ueda, Eriko Matsuno, Riku Matsumoto, Maaya Akita, Shinji Takamatsu, Eiji Miyoshi","doi":"10.1007/s10719-024-10163-w","DOIUrl":"10.1007/s10719-024-10163-w","url":null,"abstract":"<p><p>Recent findings in glycobiology revealed direct evidence of the involvement of oligosaccharide changes in human diseases, including liver diseases. Fucosylation describes the attachment of a fucose residue to a glycan or glycolipid. We demonstrated that fucosylated proteins are useful serum biomarkers for nonalcoholic fatty liver disease. Among fucosyltransferases, expression of alpha-1, 6-fucosyltransferase (Fut8), which produces core fucose, is frequently elevated during the progression of human chronic liver diseases. Previously, we discovered core-fucose-specific Pholiota squarrosa lectin (PhoSL) from Japanese mushroom Sugitake. Lectins are bioactive compounds that bind to glycan specifically, and various kinds of lectin have a variety of biological functions. Using high-fat and high-cholesterol (HFHC)-fed steatohepatitic mice, we found that core fucosylation increases in hepatic inflammatory macrophages. Antibody drugs bind to specific antigens and block protein function. We hypothesized that, like antibody drugs, PhoSL could have inhibitory effects on glycoproteins involved in steatohepatitis progression. PhoSL administration dramatically decreased hepatic macrophage infiltration and liver fibrosis-related gene expression. Using mouse macrophage-like cell RAW264.7, we found that PhoSL enhanced core-fucose-mediated activation of macrophage cell death by blocking interferon-γ/signal transducer and activator of transcription 1 (STAT1) signaling. Core-fucose-mediated cell death is a mechanism for the anti-inflammatory effects and anti-fibrotic effects of PhoSL on activated macrophages in steatohepatitic liver. In addition, PhoSL provides an anti-fibrotic effect by blocking transforming growth factor-β/SMAD family member 3 signaling in hepatic stellate cells. In conclusion, we found core-fucose-specific PhoSL administration could suppress steatohepatitis progression by decreasing inflammatory macrophage infiltration and fibrotic signaling in hepatic stellate cells.</p>","PeriodicalId":12762,"journal":{"name":"Glycoconjugate Journal","volume":" ","pages":"267-278"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142153753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Glycoconjugate Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1