{"title":"Fast dynamics in the HPA axis: Insight from mathematical and experimental studies","authors":"Jamie J. Walker , Nicola Romanò","doi":"10.1016/j.coemr.2022.100403","DOIUrl":null,"url":null,"abstract":"<div><p>The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterised by complex dynamics spanning several timescales. This ranges from slow circadian rhythms in blood hormone concentration to faster ultradian pulses of hormone secretion and even more rapid oscillations in electrical and calcium activity in neuroendocrine cells of the hypothalamus and pituitary gland. Here, we focus on the system's oscillations on the short timescale. We highlight some of the mathematical modelling and experimental work that has been carried out to characterise the mechanisms regulating this highly dynamic mode of neuroendocrine signalling and discuss some future directions that may be explored to enhance understanding of HPA function.</p></div>","PeriodicalId":52218,"journal":{"name":"Current Opinion in Endocrine and Metabolic Research","volume":"27 ","pages":"Article 100403"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9823091/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Endocrine and Metabolic Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451965022000886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterised by complex dynamics spanning several timescales. This ranges from slow circadian rhythms in blood hormone concentration to faster ultradian pulses of hormone secretion and even more rapid oscillations in electrical and calcium activity in neuroendocrine cells of the hypothalamus and pituitary gland. Here, we focus on the system's oscillations on the short timescale. We highlight some of the mathematical modelling and experimental work that has been carried out to characterise the mechanisms regulating this highly dynamic mode of neuroendocrine signalling and discuss some future directions that may be explored to enhance understanding of HPA function.