A Statistical Parametric Mapping Analysis Approach for the Evaluation of a Passive Back Support Exoskeleton on Mechanical Loading During a Simulated Patient Transfer Task.

IF 1.1 4区 医学 Q4 ENGINEERING, BIOMEDICAL Journal of Applied Biomechanics Pub Date : 2023-02-01 DOI:10.1123/jab.2022-0126
Unai Latorre Erezuma, Maialen Zelaia Amilibia, Ander Espin Elorza, Camilo Cortés, Jon Irazusta, Ana Rodriguez-Larrad
{"title":"A Statistical Parametric Mapping Analysis Approach for the Evaluation of a Passive Back Support Exoskeleton on Mechanical Loading During a Simulated Patient Transfer Task.","authors":"Unai Latorre Erezuma,&nbsp;Maialen Zelaia Amilibia,&nbsp;Ander Espin Elorza,&nbsp;Camilo Cortés,&nbsp;Jon Irazusta,&nbsp;Ana Rodriguez-Larrad","doi":"10.1123/jab.2022-0126","DOIUrl":null,"url":null,"abstract":"<p><p>This study assessed the effectiveness of a passive back support exoskeleton during a mechanical loading task. Fifteen healthy participants performed a simulated patient transfer task while wearing the Laevo (version 2.5) passive back support exoskeleton. Collected metrics encompassed L5-S1 joint moments, back and abdominal muscle activity, lower body and back kinematics, center of mass displacement, and movement smoothness. A statistical parametric mapping analysis approach was used to overcome limitations from discretization of continuous data. The exoskeleton reduced L5-S1 joint moments during trunk flexion, but wearing the device restricted L5-S1 joint flexion when flexing the trunk as well as hip and knee extension, preventing participants from standing fully upright. Moreover, wearing the device limited center of mass motion in the caudal direction and increased its motion in the anterior direction. Therefore, wearing the exoskeleton partly reduced lower back moments during the lowering phase of the patient transfer task, but there were some undesired effects such as altered joint kinematics and center of mass displacement. Statistical parametric mapping analysis was useful in determining the benefits and hindrances produced by wearing the exoskeleton while performing the simulated patient transfer task and should be utilized in further studies to inform design and appropriate usage.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 1","pages":"22-33"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0126","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

This study assessed the effectiveness of a passive back support exoskeleton during a mechanical loading task. Fifteen healthy participants performed a simulated patient transfer task while wearing the Laevo (version 2.5) passive back support exoskeleton. Collected metrics encompassed L5-S1 joint moments, back and abdominal muscle activity, lower body and back kinematics, center of mass displacement, and movement smoothness. A statistical parametric mapping analysis approach was used to overcome limitations from discretization of continuous data. The exoskeleton reduced L5-S1 joint moments during trunk flexion, but wearing the device restricted L5-S1 joint flexion when flexing the trunk as well as hip and knee extension, preventing participants from standing fully upright. Moreover, wearing the device limited center of mass motion in the caudal direction and increased its motion in the anterior direction. Therefore, wearing the exoskeleton partly reduced lower back moments during the lowering phase of the patient transfer task, but there were some undesired effects such as altered joint kinematics and center of mass displacement. Statistical parametric mapping analysis was useful in determining the benefits and hindrances produced by wearing the exoskeleton while performing the simulated patient transfer task and should be utilized in further studies to inform design and appropriate usage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在模拟病人转移任务中评估被动背支撑外骨骼机械负荷的统计参数映射分析方法。
本研究评估了被动背支撑外骨骼在机械负荷任务中的有效性。15名健康参与者在佩戴Laevo(2.5版)被动背部支撑外骨骼时进行了模拟患者转移任务。收集的指标包括L5-S1关节力矩、背部和腹肌活动、下半身和背部运动学、质心位移和运动平稳性。采用统计参数映射分析方法克服了连续数据离散化的局限性。外骨骼减少了躯干屈曲时L5-S1关节的力矩,但佩戴该装置限制了躯干屈曲时L5-S1关节的屈曲以及髋关节和膝关节的伸展,使参与者无法完全直立站立。此外,佩戴该装置限制了质心在尾端方向的运动,增加了其在前方向的运动。因此,在病人转移任务的降低阶段,佩戴外骨骼部分地减少了下背部的力矩,但也有一些不希望的影响,如关节运动学和质心位移的改变。统计参数映射分析有助于确定佩戴外骨骼在执行模拟患者转移任务时产生的益处和障碍,并应在进一步的研究中使用,以告知设计和适当的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Biomechanics
Journal of Applied Biomechanics 医学-工程:生物医学
CiteScore
2.00
自引率
0.00%
发文量
47
审稿时长
6-12 weeks
期刊介绍: The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.
期刊最新文献
Role of Hip Internal Rotation Range and Foot Progression Angle for Preventing Jones Fracture During Crossover Cutting. The Effect of Step Frequency and Running Speed on the Coordination of the Pelvis and Thigh Segments During Running. Effects of Different Inertial Measurement Unit Sensor-to-Segment Calibrations on Clinical 3-Dimensional Humerothoracic Joint Angles Estimation. Enhancing Sprint Performance and Biomechanics in Semiprofessional Football Players Through Repeated-Sprint Training. Investigation of a Theoretical Model for the Rotational Shot Put Technique.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1