Tomoya Ishida, Mina Samukawa, Yuta Koshino, Takumi Ino, Satoshi Kasahara, Harukazu Tohyama
{"title":"Pelvic Rotation Is Associated With Asymmetry in the Knee Extensor Moment During Double-Leg Squatting After Anterior Cruciate Ligament Reconstruction.","authors":"Tomoya Ishida, Mina Samukawa, Yuta Koshino, Takumi Ino, Satoshi Kasahara, Harukazu Tohyama","doi":"10.1123/jab.2022-0204","DOIUrl":null,"url":null,"abstract":"<p><p>Asymmetry in knee extensor moment during double-leg squatting was observed after anterior cruciate ligament reconstruction, even after the completion of the rehabilitation program for return to sports. The purpose of this study was to clarify the association between asymmetry in the knee extensor moment and pelvic rotation angle during double-leg squatting after anterior cruciate ligament reconstruction. Twenty-four participants performed double-leg squatting. Kinetics and kinematics during squatting were analyzed using a 3-dimensional motion analysis system with 2 force plates. The limb symmetry index of knee extensor moment was predicted by the pelvic rotation angle (R2 = .376, P = .001). In addition, the pelvic rotation and the limb symmetry index of the vertical ground reaction force independently explained the limb symmetry index of the knee extensor moment (R2 = .635, P < .001, β of pelvic rotation = -0.489, β of vertical ground reaction force = 0.524). Pelvic rotation toward the involved limb was associated with a smaller knee extensor moment in the involved limb than in the uninvolved limb. The assessment of pelvic rotation would be useful for partially predicting asymmetry in the knee extensor moment during double-leg squatting. Minimizing pelvic rotation may improve the asymmetry in the knee extensor moment during double-leg squatting after anterior cruciate ligament reconstruction.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"39 1","pages":"62-68"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2022-0204","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 2
Abstract
Asymmetry in knee extensor moment during double-leg squatting was observed after anterior cruciate ligament reconstruction, even after the completion of the rehabilitation program for return to sports. The purpose of this study was to clarify the association between asymmetry in the knee extensor moment and pelvic rotation angle during double-leg squatting after anterior cruciate ligament reconstruction. Twenty-four participants performed double-leg squatting. Kinetics and kinematics during squatting were analyzed using a 3-dimensional motion analysis system with 2 force plates. The limb symmetry index of knee extensor moment was predicted by the pelvic rotation angle (R2 = .376, P = .001). In addition, the pelvic rotation and the limb symmetry index of the vertical ground reaction force independently explained the limb symmetry index of the knee extensor moment (R2 = .635, P < .001, β of pelvic rotation = -0.489, β of vertical ground reaction force = 0.524). Pelvic rotation toward the involved limb was associated with a smaller knee extensor moment in the involved limb than in the uninvolved limb. The assessment of pelvic rotation would be useful for partially predicting asymmetry in the knee extensor moment during double-leg squatting. Minimizing pelvic rotation may improve the asymmetry in the knee extensor moment during double-leg squatting after anterior cruciate ligament reconstruction.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.