Jason M Keaton, Benjamin G Workman, Linfeng Xie, James R Paulson
{"title":"Analog-sensitive Cdk1 as a tool to study mitotic exit: protein phosphatase 1 is required downstream from Cdk1 inactivation in budding yeast.","authors":"Jason M Keaton, Benjamin G Workman, Linfeng Xie, James R Paulson","doi":"10.1007/s10577-023-09736-6","DOIUrl":null,"url":null,"abstract":"<p><p>We show that specific inactivation of the protein kinase Cdk1/cyclin B (Cdc28/Clb2) triggers exit from mitosis in the budding yeast Saccharomyces cerevisiae. Cells carrying the allele cdc28-as1, which makes Cdk1 (Cdc28) uniquely sensitive to the ATP analog 1NM-PP1, were arrested with spindle poisons and then treated with 1NM-PP1 to inhibit Cdk1. This caused the cells to leave mitosis and enter G1-phase as shown by initiation of rebudding (without cytokinesis), induction of mating projections (\"shmoos\") by α-factor, stabilization of Sic1, and degradation of Clb2. It is known that Cdk1 must be inactivated for cells to exit mitosis, but our results show that inactivation of Cdk1 is not only necessary but also sufficient to initiate the transition from mitosis to G1-phase. This result suggests a system in which to test requirements for particular gene products downstream from Cdk1 inactivation, for example, by combining cdc28-as1 with conditional mutations in the genes of interest. Using this approach, we demonstrate that protein phosphatase 1 (PPase1; Glc7 in S. cerevisiae) is required for mitotic exit and reestablishment of interphase following Cdk1 inactivation. This system could be used to test the need for other protein phosphatases downstream from Cdk1 inactivation, such as PPase 2A and Cdc14, and it could be combined with phosphoproteomics to gain information about the substrates that the various phosphatases act upon during mitotic exit.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"31 3","pages":"27"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromosome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10577-023-09736-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We show that specific inactivation of the protein kinase Cdk1/cyclin B (Cdc28/Clb2) triggers exit from mitosis in the budding yeast Saccharomyces cerevisiae. Cells carrying the allele cdc28-as1, which makes Cdk1 (Cdc28) uniquely sensitive to the ATP analog 1NM-PP1, were arrested with spindle poisons and then treated with 1NM-PP1 to inhibit Cdk1. This caused the cells to leave mitosis and enter G1-phase as shown by initiation of rebudding (without cytokinesis), induction of mating projections ("shmoos") by α-factor, stabilization of Sic1, and degradation of Clb2. It is known that Cdk1 must be inactivated for cells to exit mitosis, but our results show that inactivation of Cdk1 is not only necessary but also sufficient to initiate the transition from mitosis to G1-phase. This result suggests a system in which to test requirements for particular gene products downstream from Cdk1 inactivation, for example, by combining cdc28-as1 with conditional mutations in the genes of interest. Using this approach, we demonstrate that protein phosphatase 1 (PPase1; Glc7 in S. cerevisiae) is required for mitotic exit and reestablishment of interphase following Cdk1 inactivation. This system could be used to test the need for other protein phosphatases downstream from Cdk1 inactivation, such as PPase 2A and Cdc14, and it could be combined with phosphoproteomics to gain information about the substrates that the various phosphatases act upon during mitotic exit.
期刊介绍:
Chromosome Research publishes manuscripts from work based on all organisms and encourages submissions in the following areas including, but not limited, to:
· Chromosomes and their linkage to diseases;
· Chromosome organization within the nucleus;
· Chromatin biology (transcription, non-coding RNA, etc);
· Chromosome structure, function and mechanics;
· Chromosome and DNA repair;
· Epigenetic chromosomal functions (centromeres, telomeres, replication, imprinting,
dosage compensation, sex determination, chromosome remodeling);
· Architectural/epigenomic organization of the genome;
· Functional annotation of the genome;
· Functional and comparative genomics in plants and animals;
· Karyology studies that help resolve difficult taxonomic problems or that provide
clues to fundamental mechanisms of genome and karyotype evolution in plants and animals;
· Mitosis and Meiosis;
· Cancer cytogenomics.