Pub Date : 2024-11-07DOI: 10.1007/s10577-024-09757-9
Mayowa Azeez Osundiji, Eva Kahn, Brendan Lanpher
Chromosome 4p16.3 microdeletions are known to cause Wolf-Hirschhorn syndrome (WHS), which is characterized by a distinct craniofacial gestalt and multiple congenital malformations. The 4p16.3 region encompasses WHS critical region 1 (WHSCR1) and 2 (WHSCR2). The WHSCR contains several genes that have been implicated in the WHS phenotype including: WHS candidate 1 [WHSC1 (aka NSD2, OMIM 602952)], WHS candidate 2 [WHSC2 (aka NELFA, OMIM 606026)], and LETM1 (OMIM 604407). Although several patients harboring 4p16.3 microdeletions that are associated with WHS phenotypes have been reported, the precise molecular underpinnings of WHS are subjects of active investigations. The potential role(s) of genes within the 4p16.3 are increasingly being investigated. Here we report a novel 4p16.3 terminal microdeletion that is not associated with the characteristic WHS phenotype. We studied Individual A (7-months-old female) and her father, Individual B (27-year-old), who both carry a terminal 4p16.3 microdeletion (about 555 kb) that is distal to the WHSCR1 and WHSCR2, and does not include WHSC1, WHSC2, or LETM1. Overall, our findings expand the phenotypic spectrum associated with 4p16.3 microdeletions and support the previous observations that, in some individuals, microdeletions within 4p16.3 region may not be sufficient to cause WHS.
{"title":"A familial chromosome 4p16.3 terminal microdeletion that does not cause Wolf-Hirschhorn (4p-) syndrome.","authors":"Mayowa Azeez Osundiji, Eva Kahn, Brendan Lanpher","doi":"10.1007/s10577-024-09757-9","DOIUrl":"https://doi.org/10.1007/s10577-024-09757-9","url":null,"abstract":"<p><p>Chromosome 4p16.3 microdeletions are known to cause Wolf-Hirschhorn syndrome (WHS), which is characterized by a distinct craniofacial gestalt and multiple congenital malformations. The 4p16.3 region encompasses WHS critical region 1 (WHSCR1) and 2 (WHSCR2). The WHSCR contains several genes that have been implicated in the WHS phenotype including: WHS candidate 1 [WHSC1 (aka NSD2, OMIM 602952)], WHS candidate 2 [WHSC2 (aka NELFA, OMIM 606026)], and LETM1 (OMIM 604407). Although several patients harboring 4p16.3 microdeletions that are associated with WHS phenotypes have been reported, the precise molecular underpinnings of WHS are subjects of active investigations. The potential role(s) of genes within the 4p16.3 are increasingly being investigated. Here we report a novel 4p16.3 terminal microdeletion that is not associated with the characteristic WHS phenotype. We studied Individual A (7-months-old female) and her father, Individual B (27-year-old), who both carry a terminal 4p16.3 microdeletion (about 555 kb) that is distal to the WHSCR1 and WHSCR2, and does not include WHSC1, WHSC2, or LETM1. Overall, our findings expand the phenotypic spectrum associated with 4p16.3 microdeletions and support the previous observations that, in some individuals, microdeletions within 4p16.3 region may not be sufficient to cause WHS.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 4","pages":"13"},"PeriodicalIF":2.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1007/s10577-024-09756-w
Kevin Halter, Jingyi Chen, Tadeas Priklopil, Asun Monfort, Anton Wutz
Mouse embryonic stem cells (ESCs) possess a pluripotent developmental potential and a stable karyotype. An exception is the frequent loss of one X chromosome in female ESCs derived from inbred mice. In contrast, female ESCs from crosses between different Mus musculus subspecies often maintain two X chromosomes and can model X chromosome inactivation. Here we report that combined mutations of Hira and Cdk8 induce rapid loss of one X chromosome in a Mus musculus castaneus hybrid female ESC line that originally maintains two X chromosomes. We show that MEK1 inhibition, which is used for culturing naive pluripotent ESCs is sufficient to induce X chromosome loss. In conventional ESC media, Hira and Cdk8 mutant ESCs maintain both X chromosomes. Induction of X chromosome loss by switching to naive culture media allows us to perform kinetic measurements for calculating the chromosome loss rate. Our analysis shows that X chromosome loss is not explained by selection of XO cells, but likely driven by a process of chromosome elimination. We show that elimination of the X chromosome occurs with a rate of 0.3% per cell per division, which exceeds reported autosomal loss rates by 3 orders of magnitude. We show that chromosomes 8 and 11 are stably maintained. Notably, Xist expression from one of the two X chromosomes rescues X chromosomal instability in ΔHiraΔCdk8 ESCs. Our study defines mutations of Hira and Cdk8 as molecular drivers for X chromosome elimination in naive female ESCs and describes a cell system for elucidating the underlying mechanism.
小鼠胚胎干细胞具有多能发育潜能和稳定的核型。一个例外是,近交系小鼠的雌性胚胎干细胞经常丢失一条X染色体。相反,来自不同麝亚种杂交的雌性 ESCs 通常保持两条 X 染色体,并能模拟 X 染色体失活。在这里,我们报告了在一个原本保持两条X染色体的蓖麻麝杂交雌性ESC品系中,Hira和Cdk8的联合突变诱导了一条X染色体的快速缺失。我们发现,用于培养幼稚多能 ESCs 的 MEK1 抑制足以诱导 X 染色体缺失。在传统的造血干细胞培养基中,Hira和Cdk8突变型造血干细胞能保持两条X染色体。通过改用天真培养基诱导X染色体缺失,我们可以进行动力学测量,计算染色体缺失率。我们的分析表明,X染色体缺失的原因不是XO细胞的选择,而可能是染色体的消除过程。我们发现,X 染色体的消除率为每个细胞每次分裂的 0.3%,比报告的常染色体丢失率高出 3 个数量级。我们发现,8 号和 11 号染色体得到了稳定的维持。值得注意的是,来自两条X染色体之一的Xist表达能挽救ΔHiraΔCdk8 ESC中X染色体的不稳定性。我们的研究确定了Hira和Cdk8的突变是导致天真雌性ESC中X染色体消除的分子驱动因素,并描述了一种用于阐明潜在机制的细胞系统。
{"title":"Cdk8 and Hira mutations trigger X chromosome elimination in naive female hybrid mouse embryonic stem cells.","authors":"Kevin Halter, Jingyi Chen, Tadeas Priklopil, Asun Monfort, Anton Wutz","doi":"10.1007/s10577-024-09756-w","DOIUrl":"10.1007/s10577-024-09756-w","url":null,"abstract":"<p><p>Mouse embryonic stem cells (ESCs) possess a pluripotent developmental potential and a stable karyotype. An exception is the frequent loss of one X chromosome in female ESCs derived from inbred mice. In contrast, female ESCs from crosses between different Mus musculus subspecies often maintain two X chromosomes and can model X chromosome inactivation. Here we report that combined mutations of Hira and Cdk8 induce rapid loss of one X chromosome in a Mus musculus castaneus hybrid female ESC line that originally maintains two X chromosomes. We show that MEK1 inhibition, which is used for culturing naive pluripotent ESCs is sufficient to induce X chromosome loss. In conventional ESC media, Hira and Cdk8 mutant ESCs maintain both X chromosomes. Induction of X chromosome loss by switching to naive culture media allows us to perform kinetic measurements for calculating the chromosome loss rate. Our analysis shows that X chromosome loss is not explained by selection of XO cells, but likely driven by a process of chromosome elimination. We show that elimination of the X chromosome occurs with a rate of 0.3% per cell per division, which exceeds reported autosomal loss rates by 3 orders of magnitude. We show that chromosomes 8 and 11 are stably maintained. Notably, Xist expression from one of the two X chromosomes rescues X chromosomal instability in ΔHiraΔCdk8 ESCs. Our study defines mutations of Hira and Cdk8 as molecular drivers for X chromosome elimination in naive female ESCs and describes a cell system for elucidating the underlying mechanism.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 4","pages":"12"},"PeriodicalIF":2.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1007/s10577-024-09753-z
Negar Nahali, Mohammadsaleh Oshaghi, Jonas Paulsen
Interphase chromosomes reside within distinct nuclear regions known as chromosome territories (CTs). Recent observations from Hi-C analyses, a method mapping chromosomal interactions, have revealed varied decay in contact probabilities among different chromosomes. Our study explores the relationship between this contact decay and the particular shapes of the chromosome territories they occupy. For this, we employed molecular dynamics (MD) simulations to examine how confined polymers, resembling chromosomes, behave within different confinement geometries similar to chromosome territory boundaries. Our simulations unveil so far unreported relationships between contact probabilities and end-to-end distances varying based on different confinement geometries. These findings highlight the crucial impact of chromosome territories on shaping the larger-scale properties of 3D genome organization. They emphasize the intrinsic connection between the shapes of these territories and the contact behaviors exhibited by chromosomes. Understanding these correlations is key to accurately interpret Hi-C and microscopy data, and offers vital insights into the foundational principles governing genomic organization.
{"title":"Modeling properties of chromosome territories using polymer filaments in diverse confinement geometries.","authors":"Negar Nahali, Mohammadsaleh Oshaghi, Jonas Paulsen","doi":"10.1007/s10577-024-09753-z","DOIUrl":"10.1007/s10577-024-09753-z","url":null,"abstract":"<p><p>Interphase chromosomes reside within distinct nuclear regions known as chromosome territories (CTs). Recent observations from Hi-C analyses, a method mapping chromosomal interactions, have revealed varied decay in contact probabilities among different chromosomes. Our study explores the relationship between this contact decay and the particular shapes of the chromosome territories they occupy. For this, we employed molecular dynamics (MD) simulations to examine how confined polymers, resembling chromosomes, behave within different confinement geometries similar to chromosome territory boundaries. Our simulations unveil so far unreported relationships between contact probabilities and end-to-end distances varying based on different confinement geometries. These findings highlight the crucial impact of chromosome territories on shaping the larger-scale properties of 3D genome organization. They emphasize the intrinsic connection between the shapes of these territories and the contact behaviors exhibited by chromosomes. Understanding these correlations is key to accurately interpret Hi-C and microscopy data, and offers vital insights into the foundational principles governing genomic organization.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 3","pages":"11"},"PeriodicalIF":2.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1007/s10577-024-09755-x
Alain Debec, Romain Peronnet, Michael Lang, Mathieu Molet
The number of chromosomes varies tremendously across species. It is not clear whether having more or fewer chromosomes could be advantageous. The probability of non-disjunction should theoretically decrease with smaller karyotypes, but too long chromosomes should enforce spatial constraint for their segregation during the mitotic anaphase. Here, we propose a new experimental cell system to acquire novel insights into the mechanisms underlying chromosome segregation. We collected the endemic Australian ant Myrmecia croslandi, the only known species with the simplest possible karyotype of a single chromosome in the haploid males (and one pair of chromosomes in the diploid females), since males are typically haploid in hymenopteran insects. Five colonies, each with a queen and a few hundreds of workers, were collected in the Canberra district (Australia), underwent karyotype analysis to confirm the presence of a single pair of chromosomes in worker pupae, and were subsequently maintained in the laboratory in Paris (France). Starting from dissociated male embryos, we successfully conducted primary cell cultures comprised of single-chromosome cells. This could be developed into a unique model that will be of great interest for future genomic and cell biology studies related to mitosis.
{"title":"Primary cell cultures from the single-chromosome ant Myrmecia croslandi.","authors":"Alain Debec, Romain Peronnet, Michael Lang, Mathieu Molet","doi":"10.1007/s10577-024-09755-x","DOIUrl":"10.1007/s10577-024-09755-x","url":null,"abstract":"<p><p>The number of chromosomes varies tremendously across species. It is not clear whether having more or fewer chromosomes could be advantageous. The probability of non-disjunction should theoretically decrease with smaller karyotypes, but too long chromosomes should enforce spatial constraint for their segregation during the mitotic anaphase. Here, we propose a new experimental cell system to acquire novel insights into the mechanisms underlying chromosome segregation. We collected the endemic Australian ant Myrmecia croslandi, the only known species with the simplest possible karyotype of a single chromosome in the haploid males (and one pair of chromosomes in the diploid females), since males are typically haploid in hymenopteran insects. Five colonies, each with a queen and a few hundreds of workers, were collected in the Canberra district (Australia), underwent karyotype analysis to confirm the presence of a single pair of chromosomes in worker pupae, and were subsequently maintained in the laboratory in Paris (France). Starting from dissociated male embryos, we successfully conducted primary cell cultures comprised of single-chromosome cells. This could be developed into a unique model that will be of great interest for future genomic and cell biology studies related to mitosis.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 3","pages":"10"},"PeriodicalIF":2.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1007/s10577-024-09754-y
Xiali Jiang, Bin Liang, Bilian Chen, Xiaoqing Wu, Yan Wang, Na Lin, Hailong Huang, Liangpu Xu
Background: Small supernumerary marker chromosomes (sSMCs) are additional chromosomes with unclear structures and origins, and their correlations with clinical fetal phenotypes remain incompletely understood, which reduces the accuracy of genetic counseling.
Methods: We conducted a retrospective analysis of a cohort of 36 cases of sSMCs diagnosed in our center. We performed G-banding and chromosomal microarray analysis (CMA). The resulting karyotypes were compared with case reports in the literature and various databases including OMIM, DECIPHER, ClinVar, ClinGen, ISCA, DGV, and PubMed.
Results: Karyotype analysis data revealed that 19 out of 36 fetuses were mosaic. Copy number variants (CNVs) analysis results showed that 27 out of 36 fetuses harbored pathogenic/likely pathogenic variants. Among these 27 cases, 11 fetuses carried sex chromosome-related CNVs, including 4 female cases exhibiting Turner syndrome phenotypes and 7 cases showing Y chromosome deletions. In the remaining 16 fetuses with autosomal CNVs, 9 fetuses carried variants associated with Cat eye syndrome, Emanuel syndrome, Tetrasomy 18p, and 15q11-q13 duplication syndrome. Among these, 22 fetuses were terminated, and the remaining 5 fetuses were delivered and developed normally. Additionally, we identified a few variants with unclear pathogenicity.
Conclusion: Cytogenetic analysis is essential for identifying the pathogenicity of sSMCs and increasing the accuracy of genetic counseling.
{"title":"Prenatal diagnosis and genetic analysis of small supernumerary marker chromosomes in the eastern chinese han population: A retrospective study of 36 cases.","authors":"Xiali Jiang, Bin Liang, Bilian Chen, Xiaoqing Wu, Yan Wang, Na Lin, Hailong Huang, Liangpu Xu","doi":"10.1007/s10577-024-09754-y","DOIUrl":"10.1007/s10577-024-09754-y","url":null,"abstract":"<p><strong>Background: </strong>Small supernumerary marker chromosomes (sSMCs) are additional chromosomes with unclear structures and origins, and their correlations with clinical fetal phenotypes remain incompletely understood, which reduces the accuracy of genetic counseling.</p><p><strong>Methods: </strong>We conducted a retrospective analysis of a cohort of 36 cases of sSMCs diagnosed in our center. We performed G-banding and chromosomal microarray analysis (CMA). The resulting karyotypes were compared with case reports in the literature and various databases including OMIM, DECIPHER, ClinVar, ClinGen, ISCA, DGV, and PubMed.</p><p><strong>Results: </strong>Karyotype analysis data revealed that 19 out of 36 fetuses were mosaic. Copy number variants (CNVs) analysis results showed that 27 out of 36 fetuses harbored pathogenic/likely pathogenic variants. Among these 27 cases, 11 fetuses carried sex chromosome-related CNVs, including 4 female cases exhibiting Turner syndrome phenotypes and 7 cases showing Y chromosome deletions. In the remaining 16 fetuses with autosomal CNVs, 9 fetuses carried variants associated with Cat eye syndrome, Emanuel syndrome, Tetrasomy 18p, and 15q11-q13 duplication syndrome. Among these, 22 fetuses were terminated, and the remaining 5 fetuses were delivered and developed normally. Additionally, we identified a few variants with unclear pathogenicity.</p><p><strong>Conclusion: </strong>Cytogenetic analysis is essential for identifying the pathogenicity of sSMCs and increasing the accuracy of genetic counseling.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 3","pages":"9"},"PeriodicalIF":2.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.1007/s10577-024-09751-1
Yi-Tzu Kuo, Jacob Gigi Kurian, Veit Schubert, Jörg Fuchs, Michael Melzer, Ananthu Muraleedharan, Ravi Maruthachalam, Andreas Houben
Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific. No sex-specific major repeats are present in the high-copy repeat composition of male or female plants, or a significant difference in genome size was detected. Therefore, it is unlikely that M. fragrans possesses heteromorphic sex chromosomes.
{"title":"The holocentricity in the dioecious nutmeg (Myristica fragrans) is not based on major satellite repeats.","authors":"Yi-Tzu Kuo, Jacob Gigi Kurian, Veit Schubert, Jörg Fuchs, Michael Melzer, Ananthu Muraleedharan, Ravi Maruthachalam, Andreas Houben","doi":"10.1007/s10577-024-09751-1","DOIUrl":"10.1007/s10577-024-09751-1","url":null,"abstract":"<p><p>Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific. No sex-specific major repeats are present in the high-copy repeat composition of male or female plants, or a significant difference in genome size was detected. Therefore, it is unlikely that M. fragrans possesses heteromorphic sex chromosomes.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 2","pages":"8"},"PeriodicalIF":2.4,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-04DOI: 10.1007/s10577-024-09752-0
Jesper Boman, Christer Wiklund, Roger Vila, Niclas Backström
Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection. However, fixation is also more likely if a novel rearrangement is favored by a transmission bias, such as meiotic drive. Here, we investigate chromosomal transmission distortion in hybrids between two wood white (Leptidea sinapis) butterfly populations with extensive karyotype differences. Using data from two different crossing experiments, we uncover that there is a transmission bias favoring the ancestral chromosomal state for derived fusions, a result that shows that chromosome fusions actually can fix in populations despite being counteracted by meiotic drive. This means that meiotic drive not only can promote runaway chromosome number evolution and speciation, but also that it can be a conservative force acting against karyotypic change and the evolution of reproductive isolation. Based on our results, we suggest a mechanistic model for why chromosome fusion mutations may be opposed by meiotic drive and discuss factors contributing to karyotype evolution in Lepidoptera.
{"title":"Meiotic drive against chromosome fusions in butterfly hybrids.","authors":"Jesper Boman, Christer Wiklund, Roger Vila, Niclas Backström","doi":"10.1007/s10577-024-09752-0","DOIUrl":"10.1007/s10577-024-09752-0","url":null,"abstract":"<p><p>Species frequently differ in the number and structure of chromosomes they harbor, but individuals that are heterozygous for chromosomal rearrangements may suffer from reduced fitness. Chromosomal rearrangements like fissions and fusions can hence serve as a mechanism for speciation between incipient lineages, but their evolution poses a paradox. How can rearrangements get fixed between populations if heterozygotes have reduced fitness? One solution is that this process predominantly occurs in small and isolated populations, where genetic drift can override natural selection. However, fixation is also more likely if a novel rearrangement is favored by a transmission bias, such as meiotic drive. Here, we investigate chromosomal transmission distortion in hybrids between two wood white (Leptidea sinapis) butterfly populations with extensive karyotype differences. Using data from two different crossing experiments, we uncover that there is a transmission bias favoring the ancestral chromosomal state for derived fusions, a result that shows that chromosome fusions actually can fix in populations despite being counteracted by meiotic drive. This means that meiotic drive not only can promote runaway chromosome number evolution and speciation, but also that it can be a conservative force acting against karyotypic change and the evolution of reproductive isolation. Based on our results, we suggest a mechanistic model for why chromosome fusion mutations may be opposed by meiotic drive and discuss factors contributing to karyotype evolution in Lepidoptera.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 2","pages":"7"},"PeriodicalIF":2.4,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11068667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140867321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-19DOI: 10.1007/s10577-024-09750-2
Silvia Souza da Costa, Veniamin Fishman, Mara Pinheiro, Andre Rodrigueiro, Maria Teresa Sanseverino, Paulo Zielinsky, Claudia M B Carvalho, Carla Rosenberg, Ana Cristina Victorino Krepischi
Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.
{"title":"A germline chimeric KANK1-DMRT1 transcript derived from a complex structural variant is associated with a congenital heart defect segregating across five generations.","authors":"Silvia Souza da Costa, Veniamin Fishman, Mara Pinheiro, Andre Rodrigueiro, Maria Teresa Sanseverino, Paulo Zielinsky, Claudia M B Carvalho, Carla Rosenberg, Ana Cristina Victorino Krepischi","doi":"10.1007/s10577-024-09750-2","DOIUrl":"10.1007/s10577-024-09750-2","url":null,"abstract":"<p><p>Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 2","pages":"6"},"PeriodicalIF":2.4,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140177514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artemisia is a large genus encompassing about 400 diverse species, many of which have considerable medicinal and ecological value. However, complex morphological information and variation in ploidy level and nuclear DNA content have presented challenges for evolution studies of this genus. Consequently, taxonomic inconsistencies within the genus persist, hindering the utilization of such large plant resources. Researchers have utilized satellite DNAs to aid in chromosome identification, species classification, and evolutionary studies due to their significant sequence and copy number variation between species and close relatives. In the present study, the RepeatExplorer2 pipeline was utilized to identify 10 satellite DNAs from three species (Artemisia annua, Artemisia vulgaris, Artemisia viridisquama), and fluorescence in situ hybridization confirmed their distribution on chromosomes in 24 species, including 19 Artemisia species with 5 outgroup species from Ajania and Chrysanthemum. Signals of satellite DNAs exhibited substantial differences between species. We obtained one genus-specific satellite from the sequences. Additionally, molecular cytogenetic maps were constructed for Artemisia vulgaris, Artemisia leucophylla, and Artemisia viridisquama. One species (Artemisia verbenacea) showed a FISH distribution pattern suggestive of an allotriploid origin. Heteromorphic FISH signals between homologous chromosomes in Artemisia plants were observed at a high level. Additionally, the relative relationships between species were discussed by comparing ideograms. The results of the present study provide new insights into the accurate identification and taxonomy of the Artemisia genus using molecular cytological methods.
蒿属是一个庞大的属,包括约 400 个不同的物种,其中许多物种具有相当高的药用和生态价值。然而,复杂的形态信息以及倍性水平和核 DNA 含量的差异给该属的进化研究带来了挑战。因此,属内分类不一致的情况依然存在,阻碍了对如此庞大的植物资源的利用。由于卫星 DNA 在物种和近缘种之间存在显著的序列和拷贝数差异,研究人员利用卫星 DNA 协助进行染色体鉴定、物种分类和进化研究。在本研究中,研究人员利用 RepeatExplorer2 管道从 3 个物种(黄花蒿、寻常蒿和蒿属植物)中鉴定出了 10 个卫星 DNA,并通过荧光原位杂交确认了它们在 24 个物种染色体上的分布,其中包括 19 个蒿属植物物种以及 5 个来自蒿属植物和菊属植物的外群物种。卫星 DNA 的信号在不同物种之间存在很大差异。我们从这些序列中获得了一个种属特异性卫星。此外,我们还构建了寻常蒿(Artemisia vulgaris)、白花蒿(Artemisia leucophylla)和黄花蒿(Artemisia viridisquama)的分子细胞遗传图谱。其中一个物种(Artemisia verbenacea)的 FISH 分布模式表明其起源于异源三倍体。在蒿属植物的同源染色体之间观察到了高水平的异形 FISH 信号。此外,还通过比较表意图讨论了物种之间的相对关系。本研究的结果为利用分子细胞学方法准确鉴定和分类蒿属提供了新的见解。
{"title":"Divergence of 10 satellite repeats in Artemisia (Asteraceae: Anthemideae) based on sequential fluorescence in situ hybridization analysis: evidence for species identification and evolution","authors":"Yanze He, Jun He, Yong Zhao, Shuangshuang Zhang, Xinyu Rao, Haibin Wang, Zhenxing Wang, Aiping Song, Jiafu Jiang, Sumei Chen, Fadi Chen","doi":"10.1007/s10577-024-09749-9","DOIUrl":"https://doi.org/10.1007/s10577-024-09749-9","url":null,"abstract":"<p><i>Artemisia</i> is a large genus encompassing about 400 diverse species, many of which have considerable medicinal and ecological value. However, complex morphological information and variation in ploidy level and nuclear DNA content have presented challenges for evolution studies of this genus. Consequently, taxonomic inconsistencies within the genus persist, hindering the utilization of such large plant resources. Researchers have utilized satellite DNAs to aid in chromosome identification, species classification, and evolutionary studies due to their significant sequence and copy number variation between species and close relatives. In the present study, the RepeatExplorer2 pipeline was utilized to identify 10 satellite DNAs from three species (<i>Artemisia annua</i>, <i>Artemisia vulgaris</i>, <i>Artemisia viridisquama</i>), and fluorescence in situ hybridization confirmed their distribution on chromosomes in 24 species, including 19 <i>Artemisia</i> species with 5 outgroup species from <i>Ajania</i> and <i>Chrysanthemum</i>. Signals of satellite DNAs exhibited substantial differences between species. We obtained one genus-specific satellite from the sequences. Additionally, molecular cytogenetic maps were constructed for <i>Artemisia vulgaris</i>, <i>Artemisia leucophylla</i>, and <i>Artemisia viridisquama</i>. One species (<i>Artemisia verbenacea</i>) showed a FISH distribution pattern suggestive of an allotriploid origin. Heteromorphic FISH signals between homologous chromosomes in <i>Artemisia</i> plants were observed at a high level. Additionally, the relative relationships between species were discussed by comparing ideograms. The results of the present study provide new insights into the accurate identification and taxonomy of the <i>Artemisia</i> genus using molecular cytological methods.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"16 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140169714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}