Pub Date : 2025-01-16DOI: 10.1007/s10577-024-09761-z
D Dedukh, T Kulikova, M Dobrovolskaia, A Maslova, A Krasikova
Danio rerio, commonly known as zebrafish, is an established model organism for the developmental and cell biology studies. Although significant progress has been made in the analysis of the D. rerio genome, cytogenetic studies face challenges due to the unclear identification of chromosomes. Here, we present a novel approach to the study of the D. rerio karyotype, focusing on the analysis of lampbrush chromosomes isolated from growing oocytes. Lampbrush chromosomes, existing during diplotene, serve as a powerful tool for high-resolution mapping and transcription analysis due to their profound decondensation and remarkable lateral loops decorated by RNA polymerases and ribonucleoprotein (RNP) matrix. In D. rerio, lampbrush chromosomes are about 20 times longer than corresponding metaphase chromosomes. We found that the lampbrush chromosome stage karyotype of D. rerio is generally undifferentiated, except for several bivalents bearing distinct marker structures, including loops with complex RNP matrix and locus-associated nuclear bodies. Locus-associated nuclear bodies were enriched for coilin and snRNAs; the loci where they formed presumably correspond to the histone gene clusters. Further, we observed the accumulation of splicing factors in giant terminal RNP aggregates on one bivalent. DAPI staining of Danio rerio lampbrush chromosomes revealed large and small chromomeres non-uniformly distributed along the axis. For example, D. rerio lampbrush chromosome 4, comprising the sex-determining region, is divided into two halves-with small chromomeres bearing long lateral loops and with large dense chromomeres bearing no or very tiny lateral loops. As centromeres were not distinguishable, we identified centromeric regions in all bivalents by FISH mapping of pericentromeric RFAL1, RFAL2, and RFAM tandem repeats. Through a combination of morphological analysis, immunostaining of marker structures, and centromere mapping, we developed cytological maps of D. rerio lampbrush chromosomes. Finally, by RNA FISH we revealed transcripts of pericentromeric and telomeric tandem repeats at the lampbrush chromosome stage.
{"title":"Lampbrush chromosomes of Danio rerio.","authors":"D Dedukh, T Kulikova, M Dobrovolskaia, A Maslova, A Krasikova","doi":"10.1007/s10577-024-09761-z","DOIUrl":"https://doi.org/10.1007/s10577-024-09761-z","url":null,"abstract":"<p><p>Danio rerio, commonly known as zebrafish, is an established model organism for the developmental and cell biology studies. Although significant progress has been made in the analysis of the D. rerio genome, cytogenetic studies face challenges due to the unclear identification of chromosomes. Here, we present a novel approach to the study of the D. rerio karyotype, focusing on the analysis of lampbrush chromosomes isolated from growing oocytes. Lampbrush chromosomes, existing during diplotene, serve as a powerful tool for high-resolution mapping and transcription analysis due to their profound decondensation and remarkable lateral loops decorated by RNA polymerases and ribonucleoprotein (RNP) matrix. In D. rerio, lampbrush chromosomes are about 20 times longer than corresponding metaphase chromosomes. We found that the lampbrush chromosome stage karyotype of D. rerio is generally undifferentiated, except for several bivalents bearing distinct marker structures, including loops with complex RNP matrix and locus-associated nuclear bodies. Locus-associated nuclear bodies were enriched for coilin and snRNAs; the loci where they formed presumably correspond to the histone gene clusters. Further, we observed the accumulation of splicing factors in giant terminal RNP aggregates on one bivalent. DAPI staining of Danio rerio lampbrush chromosomes revealed large and small chromomeres non-uniformly distributed along the axis. For example, D. rerio lampbrush chromosome 4, comprising the sex-determining region, is divided into two halves-with small chromomeres bearing long lateral loops and with large dense chromomeres bearing no or very tiny lateral loops. As centromeres were not distinguishable, we identified centromeric regions in all bivalents by FISH mapping of pericentromeric RFAL1, RFAL2, and RFAM tandem repeats. Through a combination of morphological analysis, immunostaining of marker structures, and centromere mapping, we developed cytological maps of D. rerio lampbrush chromosomes. Finally, by RNA FISH we revealed transcripts of pericentromeric and telomeric tandem repeats at the lampbrush chromosome stage.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"33 1","pages":"2"},"PeriodicalIF":2.4,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143015492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-03DOI: 10.1007/s10577-024-09760-0
Pingping Cai, Christian J Casas, Gabriel Quintero Plancarte, Takashi Mikawa, Lisa L Hua
Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G1 interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.
{"title":"Ipsilateral restriction of chromosome movement along a centrosome, and apical-basal axis during the cell cycle.","authors":"Pingping Cai, Christian J Casas, Gabriel Quintero Plancarte, Takashi Mikawa, Lisa L Hua","doi":"10.1007/s10577-024-09760-0","DOIUrl":"10.1007/s10577-024-09760-0","url":null,"abstract":"<p><p>Little is known about how distance between homologous chromosomes are controlled during the cell cycle. Here, we show that the distribution of centromere components display two discrete clusters placed to either side of the centrosome and apical/basal axis from prophase to G<sub>1</sub> interphase. 4-Dimensional live cell imaging analysis of centromere and centrosome tracking reveals that centromeres oscillate largely within one cluster, but do not cross over to the other cluster. We propose a model of an axis-dependent ipsilateral restriction of chromosome oscillations throughout mitosis.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"33 1","pages":"1"},"PeriodicalIF":2.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142923836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Triploids play an important role in the polyploidization process and are considered a bridge between diploids and polyploids. To inform plant polyploidization research and polyploid breeding, it is important to explore chromosome behaviour during triploid pollen development, pollen fertility problems in triploids and the potential value of utilizing triploids. In this study, acetocarmine, carbol fuchsin and fluorescence staining methods were used to observe microsporogenesis and microspore development in fertile triploid Chinese chives. The results revealed that some of the pollen mother cells were able to undergo equal chromosome distributions (approximately 36%), whereas other pollen mother cells formed lagging chromosomes, chromosome bridges, micronuclei and early cytoplasmic divisions during microsporogenesis, resulting in microspores of different sizes. Regardless of whether an equal tetrad or an abnormal polyad was formed, microspores were released from callose in a normal manner and contained nuclei. During the process of microspore development, most of the microspore nuclei disappeared gradually and ultimately formed empty pollen cells that lacked nuclei. During the meiosis of pollen mother cells in triploid Chinese chives, a variety of chromosome distribution behaviours contribute to the formation of some viable pollen.
{"title":"Varied chromosome distribution behaviours during meiosis in triploid Chinese chives contribute to the formation of viable pollen.","authors":"Peng-Qiang Yao, Li-Hua Xie, Mei-Yu Li, Si-Qian Jiao, Shuai-Zheng Qi, Zhe Wang, Shi-Ping Cheng","doi":"10.1007/s10577-024-09759-7","DOIUrl":"10.1007/s10577-024-09759-7","url":null,"abstract":"<p><p>Triploids play an important role in the polyploidization process and are considered a bridge between diploids and polyploids. To inform plant polyploidization research and polyploid breeding, it is important to explore chromosome behaviour during triploid pollen development, pollen fertility problems in triploids and the potential value of utilizing triploids. In this study, acetocarmine, carbol fuchsin and fluorescence staining methods were used to observe microsporogenesis and microspore development in fertile triploid Chinese chives. The results revealed that some of the pollen mother cells were able to undergo equal chromosome distributions (approximately 36%), whereas other pollen mother cells formed lagging chromosomes, chromosome bridges, micronuclei and early cytoplasmic divisions during microsporogenesis, resulting in microspores of different sizes. Regardless of whether an equal tetrad or an abnormal polyad was formed, microspores were released from callose in a normal manner and contained nuclei. During the process of microspore development, most of the microspore nuclei disappeared gradually and ultimately formed empty pollen cells that lacked nuclei. During the meiosis of pollen mother cells in triploid Chinese chives, a variety of chromosome distribution behaviours contribute to the formation of some viable pollen.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 4","pages":"15"},"PeriodicalIF":2.4,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The origin of hexaploid sweetpotato [Ipomoea batatas (L.) Lam.] remains controversial. Comparative karyotype analysis is particularly useful in determining species relationships and the origin of polyploid species. In previous study, we developed a set of oligo probes and identified all chromosomes of Ipomoea nil, a model diploid Ipomoea species. Here, we found that this set of oligo probes could be used to identify all chromosomes of sweetpotato and its wild relatives with different ploidy. Karyotypes based on individually identified chromosomes were established and the number and position of 5S and 35S rDNA loci were determined for these Ipomoea species. Comparison of their karyotypes revealed distinct variations in the karyotypic parameters. Karyological relationships among these species were revealed by principal coordinate analysis (PCoA) based on six quantitative parameters (x, 2n, TCL, MCA, CVCL and CVCI). These results show that I. trifida is the most closely related diploid species to sweetpotato, and other diploid species could be excluded from consideration as its possible diploid ancestor. In addition, our study also provides cytogenetic evidence for the segmental allopolyploid hypothesis of sweetpotato origin.
{"title":"Comparative karyotype analysis provides cytogenetic evidence for the origin of sweetpotato.","authors":"Jianying Sun, Qian Zhang, Meiling Xu, Mengxiao Yan, Xingyu Liu, Jian Sun, Qinghe Cao, Hongxia Wang, Jun Yang, Zongyun Li, Yonghua Han","doi":"10.1007/s10577-024-09758-8","DOIUrl":"10.1007/s10577-024-09758-8","url":null,"abstract":"<p><p>The origin of hexaploid sweetpotato [Ipomoea batatas (L.) Lam.] remains controversial. Comparative karyotype analysis is particularly useful in determining species relationships and the origin of polyploid species. In previous study, we developed a set of oligo probes and identified all chromosomes of Ipomoea nil, a model diploid Ipomoea species. Here, we found that this set of oligo probes could be used to identify all chromosomes of sweetpotato and its wild relatives with different ploidy. Karyotypes based on individually identified chromosomes were established and the number and position of 5S and 35S rDNA loci were determined for these Ipomoea species. Comparison of their karyotypes revealed distinct variations in the karyotypic parameters. Karyological relationships among these species were revealed by principal coordinate analysis (PCoA) based on six quantitative parameters (x, 2n, TCL, M<sub>CA</sub>, CV<sub>CL</sub> and CV<sub>CI</sub>). These results show that I. trifida is the most closely related diploid species to sweetpotato, and other diploid species could be excluded from consideration as its possible diploid ancestor. In addition, our study also provides cytogenetic evidence for the segmental allopolyploid hypothesis of sweetpotato origin.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 4","pages":"14"},"PeriodicalIF":2.4,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-07DOI: 10.1007/s10577-024-09757-9
Mayowa Azeez Osundiji, Eva Kahn, Brendan Lanpher
Chromosome 4p16.3 microdeletions are known to cause Wolf-Hirschhorn syndrome (WHS), which is characterized by a distinct craniofacial gestalt and multiple congenital malformations. The 4p16.3 region encompasses WHS critical region 1 (WHSCR1) and 2 (WHSCR2). The WHSCR contains several genes that have been implicated in the WHS phenotype including: WHS candidate 1 [WHSC1 (aka NSD2, OMIM 602952)], WHS candidate 2 [WHSC2 (aka NELFA, OMIM 606026)], and LETM1 (OMIM 604407). Although several patients harboring 4p16.3 microdeletions that are associated with WHS phenotypes have been reported, the precise molecular underpinnings of WHS are subjects of active investigations. The potential role(s) of genes within the 4p16.3 are increasingly being investigated. Here we report a novel 4p16.3 terminal microdeletion that is not associated with the characteristic WHS phenotype. We studied Individual A (7-months-old female) and her father, Individual B (27-year-old), who both carry a terminal 4p16.3 microdeletion (about 555 kb) that is distal to the WHSCR1 and WHSCR2, and does not include WHSC1, WHSC2, or LETM1. Overall, our findings expand the phenotypic spectrum associated with 4p16.3 microdeletions and support the previous observations that, in some individuals, microdeletions within 4p16.3 region may not be sufficient to cause WHS.
{"title":"A familial chromosome 4p16.3 terminal microdeletion that does not cause Wolf-Hirschhorn (4p-) syndrome.","authors":"Mayowa Azeez Osundiji, Eva Kahn, Brendan Lanpher","doi":"10.1007/s10577-024-09757-9","DOIUrl":"10.1007/s10577-024-09757-9","url":null,"abstract":"<p><p>Chromosome 4p16.3 microdeletions are known to cause Wolf-Hirschhorn syndrome (WHS), which is characterized by a distinct craniofacial gestalt and multiple congenital malformations. The 4p16.3 region encompasses WHS critical region 1 (WHSCR1) and 2 (WHSCR2). The WHSCR contains several genes that have been implicated in the WHS phenotype including: WHS candidate 1 [WHSC1 (aka NSD2, OMIM 602952)], WHS candidate 2 [WHSC2 (aka NELFA, OMIM 606026)], and LETM1 (OMIM 604407). Although several patients harboring 4p16.3 microdeletions that are associated with WHS phenotypes have been reported, the precise molecular underpinnings of WHS are subjects of active investigations. The potential role(s) of genes within the 4p16.3 are increasingly being investigated. Here we report a novel 4p16.3 terminal microdeletion that is not associated with the characteristic WHS phenotype. We studied Individual A (7-months-old female) and her father, Individual B (27-year-old), who both carry a terminal 4p16.3 microdeletion (about 555 kb) that is distal to the WHSCR1 and WHSCR2, and does not include WHSC1, WHSC2, or LETM1. Overall, our findings expand the phenotypic spectrum associated with 4p16.3 microdeletions and support the previous observations that, in some individuals, microdeletions within 4p16.3 region may not be sufficient to cause WHS.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 4","pages":"13"},"PeriodicalIF":2.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.1007/s10577-024-09756-w
Kevin Halter, Jingyi Chen, Tadeas Priklopil, Asun Monfort, Anton Wutz
Mouse embryonic stem cells (ESCs) possess a pluripotent developmental potential and a stable karyotype. An exception is the frequent loss of one X chromosome in female ESCs derived from inbred mice. In contrast, female ESCs from crosses between different Mus musculus subspecies often maintain two X chromosomes and can model X chromosome inactivation. Here we report that combined mutations of Hira and Cdk8 induce rapid loss of one X chromosome in a Mus musculus castaneus hybrid female ESC line that originally maintains two X chromosomes. We show that MEK1 inhibition, which is used for culturing naive pluripotent ESCs is sufficient to induce X chromosome loss. In conventional ESC media, Hira and Cdk8 mutant ESCs maintain both X chromosomes. Induction of X chromosome loss by switching to naive culture media allows us to perform kinetic measurements for calculating the chromosome loss rate. Our analysis shows that X chromosome loss is not explained by selection of XO cells, but likely driven by a process of chromosome elimination. We show that elimination of the X chromosome occurs with a rate of 0.3% per cell per division, which exceeds reported autosomal loss rates by 3 orders of magnitude. We show that chromosomes 8 and 11 are stably maintained. Notably, Xist expression from one of the two X chromosomes rescues X chromosomal instability in ΔHiraΔCdk8 ESCs. Our study defines mutations of Hira and Cdk8 as molecular drivers for X chromosome elimination in naive female ESCs and describes a cell system for elucidating the underlying mechanism.
小鼠胚胎干细胞具有多能发育潜能和稳定的核型。一个例外是,近交系小鼠的雌性胚胎干细胞经常丢失一条X染色体。相反,来自不同麝亚种杂交的雌性 ESCs 通常保持两条 X 染色体,并能模拟 X 染色体失活。在这里,我们报告了在一个原本保持两条X染色体的蓖麻麝杂交雌性ESC品系中,Hira和Cdk8的联合突变诱导了一条X染色体的快速缺失。我们发现,用于培养幼稚多能 ESCs 的 MEK1 抑制足以诱导 X 染色体缺失。在传统的造血干细胞培养基中,Hira和Cdk8突变型造血干细胞能保持两条X染色体。通过改用天真培养基诱导X染色体缺失,我们可以进行动力学测量,计算染色体缺失率。我们的分析表明,X染色体缺失的原因不是XO细胞的选择,而可能是染色体的消除过程。我们发现,X 染色体的消除率为每个细胞每次分裂的 0.3%,比报告的常染色体丢失率高出 3 个数量级。我们发现,8 号和 11 号染色体得到了稳定的维持。值得注意的是,来自两条X染色体之一的Xist表达能挽救ΔHiraΔCdk8 ESC中X染色体的不稳定性。我们的研究确定了Hira和Cdk8的突变是导致天真雌性ESC中X染色体消除的分子驱动因素,并描述了一种用于阐明潜在机制的细胞系统。
{"title":"Cdk8 and Hira mutations trigger X chromosome elimination in naive female hybrid mouse embryonic stem cells.","authors":"Kevin Halter, Jingyi Chen, Tadeas Priklopil, Asun Monfort, Anton Wutz","doi":"10.1007/s10577-024-09756-w","DOIUrl":"10.1007/s10577-024-09756-w","url":null,"abstract":"<p><p>Mouse embryonic stem cells (ESCs) possess a pluripotent developmental potential and a stable karyotype. An exception is the frequent loss of one X chromosome in female ESCs derived from inbred mice. In contrast, female ESCs from crosses between different Mus musculus subspecies often maintain two X chromosomes and can model X chromosome inactivation. Here we report that combined mutations of Hira and Cdk8 induce rapid loss of one X chromosome in a Mus musculus castaneus hybrid female ESC line that originally maintains two X chromosomes. We show that MEK1 inhibition, which is used for culturing naive pluripotent ESCs is sufficient to induce X chromosome loss. In conventional ESC media, Hira and Cdk8 mutant ESCs maintain both X chromosomes. Induction of X chromosome loss by switching to naive culture media allows us to perform kinetic measurements for calculating the chromosome loss rate. Our analysis shows that X chromosome loss is not explained by selection of XO cells, but likely driven by a process of chromosome elimination. We show that elimination of the X chromosome occurs with a rate of 0.3% per cell per division, which exceeds reported autosomal loss rates by 3 orders of magnitude. We show that chromosomes 8 and 11 are stably maintained. Notably, Xist expression from one of the two X chromosomes rescues X chromosomal instability in ΔHiraΔCdk8 ESCs. Our study defines mutations of Hira and Cdk8 as molecular drivers for X chromosome elimination in naive female ESCs and describes a cell system for elucidating the underlying mechanism.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 4","pages":"12"},"PeriodicalIF":2.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11467062/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-10DOI: 10.1007/s10577-024-09753-z
Negar Nahali, Mohammadsaleh Oshaghi, Jonas Paulsen
Interphase chromosomes reside within distinct nuclear regions known as chromosome territories (CTs). Recent observations from Hi-C analyses, a method mapping chromosomal interactions, have revealed varied decay in contact probabilities among different chromosomes. Our study explores the relationship between this contact decay and the particular shapes of the chromosome territories they occupy. For this, we employed molecular dynamics (MD) simulations to examine how confined polymers, resembling chromosomes, behave within different confinement geometries similar to chromosome territory boundaries. Our simulations unveil so far unreported relationships between contact probabilities and end-to-end distances varying based on different confinement geometries. These findings highlight the crucial impact of chromosome territories on shaping the larger-scale properties of 3D genome organization. They emphasize the intrinsic connection between the shapes of these territories and the contact behaviors exhibited by chromosomes. Understanding these correlations is key to accurately interpret Hi-C and microscopy data, and offers vital insights into the foundational principles governing genomic organization.
{"title":"Modeling properties of chromosome territories using polymer filaments in diverse confinement geometries.","authors":"Negar Nahali, Mohammadsaleh Oshaghi, Jonas Paulsen","doi":"10.1007/s10577-024-09753-z","DOIUrl":"10.1007/s10577-024-09753-z","url":null,"abstract":"<p><p>Interphase chromosomes reside within distinct nuclear regions known as chromosome territories (CTs). Recent observations from Hi-C analyses, a method mapping chromosomal interactions, have revealed varied decay in contact probabilities among different chromosomes. Our study explores the relationship between this contact decay and the particular shapes of the chromosome territories they occupy. For this, we employed molecular dynamics (MD) simulations to examine how confined polymers, resembling chromosomes, behave within different confinement geometries similar to chromosome territory boundaries. Our simulations unveil so far unreported relationships between contact probabilities and end-to-end distances varying based on different confinement geometries. These findings highlight the crucial impact of chromosome territories on shaping the larger-scale properties of 3D genome organization. They emphasize the intrinsic connection between the shapes of these territories and the contact behaviors exhibited by chromosomes. Understanding these correlations is key to accurately interpret Hi-C and microscopy data, and offers vital insights into the foundational principles governing genomic organization.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 3","pages":"11"},"PeriodicalIF":2.4,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316705/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.1007/s10577-024-09755-x
Alain Debec, Romain Peronnet, Michael Lang, Mathieu Molet
The number of chromosomes varies tremendously across species. It is not clear whether having more or fewer chromosomes could be advantageous. The probability of non-disjunction should theoretically decrease with smaller karyotypes, but too long chromosomes should enforce spatial constraint for their segregation during the mitotic anaphase. Here, we propose a new experimental cell system to acquire novel insights into the mechanisms underlying chromosome segregation. We collected the endemic Australian ant Myrmecia croslandi, the only known species with the simplest possible karyotype of a single chromosome in the haploid males (and one pair of chromosomes in the diploid females), since males are typically haploid in hymenopteran insects. Five colonies, each with a queen and a few hundreds of workers, were collected in the Canberra district (Australia), underwent karyotype analysis to confirm the presence of a single pair of chromosomes in worker pupae, and were subsequently maintained in the laboratory in Paris (France). Starting from dissociated male embryos, we successfully conducted primary cell cultures comprised of single-chromosome cells. This could be developed into a unique model that will be of great interest for future genomic and cell biology studies related to mitosis.
{"title":"Primary cell cultures from the single-chromosome ant Myrmecia croslandi.","authors":"Alain Debec, Romain Peronnet, Michael Lang, Mathieu Molet","doi":"10.1007/s10577-024-09755-x","DOIUrl":"10.1007/s10577-024-09755-x","url":null,"abstract":"<p><p>The number of chromosomes varies tremendously across species. It is not clear whether having more or fewer chromosomes could be advantageous. The probability of non-disjunction should theoretically decrease with smaller karyotypes, but too long chromosomes should enforce spatial constraint for their segregation during the mitotic anaphase. Here, we propose a new experimental cell system to acquire novel insights into the mechanisms underlying chromosome segregation. We collected the endemic Australian ant Myrmecia croslandi, the only known species with the simplest possible karyotype of a single chromosome in the haploid males (and one pair of chromosomes in the diploid females), since males are typically haploid in hymenopteran insects. Five colonies, each with a queen and a few hundreds of workers, were collected in the Canberra district (Australia), underwent karyotype analysis to confirm the presence of a single pair of chromosomes in worker pupae, and were subsequently maintained in the laboratory in Paris (France). Starting from dissociated male embryos, we successfully conducted primary cell cultures comprised of single-chromosome cells. This could be developed into a unique model that will be of great interest for future genomic and cell biology studies related to mitosis.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 3","pages":"10"},"PeriodicalIF":2.4,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141735611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-19DOI: 10.1007/s10577-024-09754-y
Xiali Jiang, Bin Liang, Bilian Chen, Xiaoqing Wu, Yan Wang, Na Lin, Hailong Huang, Liangpu Xu
Background: Small supernumerary marker chromosomes (sSMCs) are additional chromosomes with unclear structures and origins, and their correlations with clinical fetal phenotypes remain incompletely understood, which reduces the accuracy of genetic counseling.
Methods: We conducted a retrospective analysis of a cohort of 36 cases of sSMCs diagnosed in our center. We performed G-banding and chromosomal microarray analysis (CMA). The resulting karyotypes were compared with case reports in the literature and various databases including OMIM, DECIPHER, ClinVar, ClinGen, ISCA, DGV, and PubMed.
Results: Karyotype analysis data revealed that 19 out of 36 fetuses were mosaic. Copy number variants (CNVs) analysis results showed that 27 out of 36 fetuses harbored pathogenic/likely pathogenic variants. Among these 27 cases, 11 fetuses carried sex chromosome-related CNVs, including 4 female cases exhibiting Turner syndrome phenotypes and 7 cases showing Y chromosome deletions. In the remaining 16 fetuses with autosomal CNVs, 9 fetuses carried variants associated with Cat eye syndrome, Emanuel syndrome, Tetrasomy 18p, and 15q11-q13 duplication syndrome. Among these, 22 fetuses were terminated, and the remaining 5 fetuses were delivered and developed normally. Additionally, we identified a few variants with unclear pathogenicity.
Conclusion: Cytogenetic analysis is essential for identifying the pathogenicity of sSMCs and increasing the accuracy of genetic counseling.
{"title":"Prenatal diagnosis and genetic analysis of small supernumerary marker chromosomes in the eastern chinese han population: A retrospective study of 36 cases.","authors":"Xiali Jiang, Bin Liang, Bilian Chen, Xiaoqing Wu, Yan Wang, Na Lin, Hailong Huang, Liangpu Xu","doi":"10.1007/s10577-024-09754-y","DOIUrl":"10.1007/s10577-024-09754-y","url":null,"abstract":"<p><strong>Background: </strong>Small supernumerary marker chromosomes (sSMCs) are additional chromosomes with unclear structures and origins, and their correlations with clinical fetal phenotypes remain incompletely understood, which reduces the accuracy of genetic counseling.</p><p><strong>Methods: </strong>We conducted a retrospective analysis of a cohort of 36 cases of sSMCs diagnosed in our center. We performed G-banding and chromosomal microarray analysis (CMA). The resulting karyotypes were compared with case reports in the literature and various databases including OMIM, DECIPHER, ClinVar, ClinGen, ISCA, DGV, and PubMed.</p><p><strong>Results: </strong>Karyotype analysis data revealed that 19 out of 36 fetuses were mosaic. Copy number variants (CNVs) analysis results showed that 27 out of 36 fetuses harbored pathogenic/likely pathogenic variants. Among these 27 cases, 11 fetuses carried sex chromosome-related CNVs, including 4 female cases exhibiting Turner syndrome phenotypes and 7 cases showing Y chromosome deletions. In the remaining 16 fetuses with autosomal CNVs, 9 fetuses carried variants associated with Cat eye syndrome, Emanuel syndrome, Tetrasomy 18p, and 15q11-q13 duplication syndrome. Among these, 22 fetuses were terminated, and the remaining 5 fetuses were delivered and developed normally. Additionally, we identified a few variants with unclear pathogenicity.</p><p><strong>Conclusion: </strong>Cytogenetic analysis is essential for identifying the pathogenicity of sSMCs and increasing the accuracy of genetic counseling.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 3","pages":"9"},"PeriodicalIF":2.4,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-08DOI: 10.1007/s10577-024-09751-1
Yi-Tzu Kuo, Jacob Gigi Kurian, Veit Schubert, Jörg Fuchs, Michael Melzer, Ananthu Muraleedharan, Ravi Maruthachalam, Andreas Houben
Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific. No sex-specific major repeats are present in the high-copy repeat composition of male or female plants, or a significant difference in genome size was detected. Therefore, it is unlikely that M. fragrans possesses heteromorphic sex chromosomes.
{"title":"The holocentricity in the dioecious nutmeg (Myristica fragrans) is not based on major satellite repeats.","authors":"Yi-Tzu Kuo, Jacob Gigi Kurian, Veit Schubert, Jörg Fuchs, Michael Melzer, Ananthu Muraleedharan, Ravi Maruthachalam, Andreas Houben","doi":"10.1007/s10577-024-09751-1","DOIUrl":"10.1007/s10577-024-09751-1","url":null,"abstract":"<p><p>Holocentric species are characterized by the presence of centromeres throughout the length of the chromosomes. We confirmed the holocentricity of the dioecious, small chromosome-size species Myristica fragrans based on the chromosome-wide distribution of the centromere-specific protein KNL1, α-tubulin fibers, and the cell cycle-dependent histone H3 serine 28 phosphorylation (H3S28ph) mark. Each holocentromere is likely composed of, on average, ten centromere units, but none of the identified and in situ hybridized high-copy satellite repeats is centromere-specific. No sex-specific major repeats are present in the high-copy repeat composition of male or female plants, or a significant difference in genome size was detected. Therefore, it is unlikely that M. fragrans possesses heteromorphic sex chromosomes.</p>","PeriodicalId":50698,"journal":{"name":"Chromosome Research","volume":"32 2","pages":"8"},"PeriodicalIF":2.4,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11078807/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}