Health information exchange network under collaboration, cooperation, and competition: A game-theoretic approach.

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Health Care Management Science Pub Date : 2023-09-01 Epub Date: 2023-06-21 DOI:10.1007/s10729-023-09640-9
Rawan Shabbar, Hiroki Sayama
{"title":"Health information exchange network under collaboration, cooperation, and competition: A game-theoretic approach.","authors":"Rawan Shabbar,&nbsp;Hiroki Sayama","doi":"10.1007/s10729-023-09640-9","DOIUrl":null,"url":null,"abstract":"<p><p>Health Information Exchange (HIE) network allows securely accessing and sharing healthcare-related information among healthcare providers (HCPs) and payers. HIE services are provided by a non-profit/profit organizations under several subscription plans options. A few studies have addressed the sustainability of the HIE network such that HIE providers, HCPs, and payers remain profitable in the long term. However, none of these studies addressed the coexistence of multiple HIE providers in the network. Such coexistence may have a huge impact on the behavior of healthcare systems in terms of adoption rate and HIE pricing strategies. In addition, in spite of all the effort to maintain cooperation between HIE providers, there is still a chance of competition among them in the market. Possible competition among service providers leads to many concerns about the HIE network sustainability and behavior. In this study, a game-theoretic approach to model the HIE market is proposed. Game-theory is used to simulate the behavior of the three different HIE network agents in the HIE market: HIE providers, HCPs, and payers. Pricing strategies and adoption decisions are optimized using a Linear Programming (LP) mathematical model. Results show that the relation between HIEs in the market is crucial to HCP/Payer adoption decision specially to small HCPs. A small change in the discount rate proposed by a competitive HIE provider will highly affect the decision of HCP/payers to join the HIE network. Finally, competition opened the opportunity for more HCPs to join the network due to reduced pricing. Furthermore, collaborative HIEs provided better performance compared to cooperative in terms of profit and HCP adoption rate by sharing their overall costs and revenues.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"26 3","pages":"516-532"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-023-09640-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Health Information Exchange (HIE) network allows securely accessing and sharing healthcare-related information among healthcare providers (HCPs) and payers. HIE services are provided by a non-profit/profit organizations under several subscription plans options. A few studies have addressed the sustainability of the HIE network such that HIE providers, HCPs, and payers remain profitable in the long term. However, none of these studies addressed the coexistence of multiple HIE providers in the network. Such coexistence may have a huge impact on the behavior of healthcare systems in terms of adoption rate and HIE pricing strategies. In addition, in spite of all the effort to maintain cooperation between HIE providers, there is still a chance of competition among them in the market. Possible competition among service providers leads to many concerns about the HIE network sustainability and behavior. In this study, a game-theoretic approach to model the HIE market is proposed. Game-theory is used to simulate the behavior of the three different HIE network agents in the HIE market: HIE providers, HCPs, and payers. Pricing strategies and adoption decisions are optimized using a Linear Programming (LP) mathematical model. Results show that the relation between HIEs in the market is crucial to HCP/Payer adoption decision specially to small HCPs. A small change in the discount rate proposed by a competitive HIE provider will highly affect the decision of HCP/payers to join the HIE network. Finally, competition opened the opportunity for more HCPs to join the network due to reduced pricing. Furthermore, collaborative HIEs provided better performance compared to cooperative in terms of profit and HCP adoption rate by sharing their overall costs and revenues.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协作、合作和竞争下的卫生信息交换网络:一种博弈论方法。
健康信息交换(HIE)网络允许在医疗保健提供者(HCP)和支付者之间安全地访问和共享医疗保健相关信息。HIE服务由非营利/营利组织根据多种订阅计划选项提供。一些研究已经解决了HIE网络的可持续性问题,以便HIE提供商、HCP和支付方长期保持盈利。然而,这些研究都没有涉及网络中多个HIE提供商的共存问题。这种共存可能会对医疗系统在采用率和HIE定价策略方面的行为产生巨大影响。此外,尽管HIE供应商尽了一切努力保持合作,但它们之间在市场上仍有竞争的机会。服务提供商之间可能存在的竞争导致了人们对HIE网络可持续性和行为的许多担忧。在本研究中,提出了一种博弈论方法来模拟HIE市场。博弈论用于模拟HIE市场中三种不同的HIE网络代理的行为:HIE提供商、HCP和支付方。定价策略和采用决策使用线性规划(LP)数学模型进行优化。结果表明,市场上HIE之间的关系对HCP/付款人的采用决策至关重要,尤其是对小型HCP。有竞争力的HIE提供商提出的折扣率的微小变化将极大地影响HCP/付款人加入HIE网络的决定。最后,由于价格降低,竞争为更多HCP加入网络打开了机会。此外,在利润和HCP采用率方面,合作HIE通过分享其整体成本和收入,提供了比合作更好的绩效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
期刊最新文献
Road coverage as demand metric for ambulance allocation. Mechanistic modeling of social conditions in disease-prediction simulations via copulas and probabilistic graphical models: HIV case study. A study of "left against medical advice" emergency department patients: an optimized explainable artificial intelligence framework. Strategic placement of volunteer responder system defibrillators. The benefits (or detriments) of adapting to demand disruptions in a hospital pharmacy with supply chain disruptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1