Microbial seed coating: An attractive tool for sustainable agriculture

Q1 Immunology and Microbiology Biotechnology Reports Pub Date : 2023-03-01 DOI:10.1016/j.btre.2023.e00781
Arezoo Paravar , Ramin Piri , Hamidreza Balouchi , Ying Ma
{"title":"Microbial seed coating: An attractive tool for sustainable agriculture","authors":"Arezoo Paravar ,&nbsp;Ramin Piri ,&nbsp;Hamidreza Balouchi ,&nbsp;Ying Ma","doi":"10.1016/j.btre.2023.e00781","DOIUrl":null,"url":null,"abstract":"<div><p>Seed coating is considered one of the best methods to promote sustainable agriculture where the physical and physiological properties of seeds can be improved to facilitate planting, increase growth indices and alleviate abiotic and biotic stresses. Several methods of seed coating are used to attain good application uniformity and adherence in the seed coating process. Seed coating has been tested in seeds of various plant species with different dimensions, forms, textures, and germination types. Plant beneficial microorganisms (PBM), such as rhizobia, bacteria, and fungi inoculated via seed inoculation can increase seed germination, plant performance and tolerance across biotic (e.g., pathogens and pests) and abiotic stress (e.g., salt, drought, and heavy metals) while reducing the use of agrochemical inputs. In this review, the microbial seed coating process and their ability to increase seed performance and protect plants from biotic and abiotic stresses are well discussed and highlighted in sustainable agricultural systems.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"37 ","pages":"Article e00781"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841043/pdf/","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X23000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 12

Abstract

Seed coating is considered one of the best methods to promote sustainable agriculture where the physical and physiological properties of seeds can be improved to facilitate planting, increase growth indices and alleviate abiotic and biotic stresses. Several methods of seed coating are used to attain good application uniformity and adherence in the seed coating process. Seed coating has been tested in seeds of various plant species with different dimensions, forms, textures, and germination types. Plant beneficial microorganisms (PBM), such as rhizobia, bacteria, and fungi inoculated via seed inoculation can increase seed germination, plant performance and tolerance across biotic (e.g., pathogens and pests) and abiotic stress (e.g., salt, drought, and heavy metals) while reducing the use of agrochemical inputs. In this review, the microbial seed coating process and their ability to increase seed performance and protect plants from biotic and abiotic stresses are well discussed and highlighted in sustainable agricultural systems.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物种子包衣:可持续农业的一种有吸引力的工具
种子包衣被认为是促进可持续农业的最佳方法之一,在可持续农业中,可以改善种子的物理和生理特性,以促进种植,提高生长指数,缓解非生物和生物胁迫。种子包衣的几种方法用于在种子包衣过程中获得良好的施用均匀性和粘附性。种子包衣已经在不同尺寸、形式、质地和发芽类型的不同植物物种的种子中进行了测试。通过种子接种接种的植物有益微生物(PBM),如根瘤菌、细菌和真菌,可以提高种子发芽率、植物性能和对生物(如病原体和害虫)和非生物胁迫(如盐、干旱和重金属)的耐受性,同时减少农用化学品投入的使用。在这篇综述中,微生物种子包衣过程及其提高种子性能和保护植物免受生物和非生物胁迫的能力在可持续农业系统中得到了充分的讨论和强调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology Reports
Biotechnology Reports Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍: Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.
期刊最新文献
Bee products: An overview of sources, biological activities and advanced approaches used in apitherapy application Potential antimicrobial and fruit juice clarification activity of amylase enzyme from Bacillus strains Characterization of host cell proteins in the downstream process of plant-Based biologics using LC-MS profiling Agrowaste-carbon and carbon-based nanocomposites for endocrine disruptive cationic dyes removal: A critical review Interaction and effects of temperature preference under a controlled environment on the diversity and abundance of the microbiome in Lutzomyia longipalpis (Diptera: Psychodidae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1