Arezoo Paravar , Ramin Piri , Hamidreza Balouchi , Ying Ma
{"title":"Microbial seed coating: An attractive tool for sustainable agriculture","authors":"Arezoo Paravar , Ramin Piri , Hamidreza Balouchi , Ying Ma","doi":"10.1016/j.btre.2023.e00781","DOIUrl":null,"url":null,"abstract":"<div><p>Seed coating is considered one of the best methods to promote sustainable agriculture where the physical and physiological properties of seeds can be improved to facilitate planting, increase growth indices and alleviate abiotic and biotic stresses. Several methods of seed coating are used to attain good application uniformity and adherence in the seed coating process. Seed coating has been tested in seeds of various plant species with different dimensions, forms, textures, and germination types. Plant beneficial microorganisms (PBM), such as rhizobia, bacteria, and fungi inoculated via seed inoculation can increase seed germination, plant performance and tolerance across biotic (e.g., pathogens and pests) and abiotic stress (e.g., salt, drought, and heavy metals) while reducing the use of agrochemical inputs. In this review, the microbial seed coating process and their ability to increase seed performance and protect plants from biotic and abiotic stresses are well discussed and highlighted in sustainable agricultural systems.</p></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"37 ","pages":"Article e00781"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9841043/pdf/","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215017X23000012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 12
Abstract
Seed coating is considered one of the best methods to promote sustainable agriculture where the physical and physiological properties of seeds can be improved to facilitate planting, increase growth indices and alleviate abiotic and biotic stresses. Several methods of seed coating are used to attain good application uniformity and adherence in the seed coating process. Seed coating has been tested in seeds of various plant species with different dimensions, forms, textures, and germination types. Plant beneficial microorganisms (PBM), such as rhizobia, bacteria, and fungi inoculated via seed inoculation can increase seed germination, plant performance and tolerance across biotic (e.g., pathogens and pests) and abiotic stress (e.g., salt, drought, and heavy metals) while reducing the use of agrochemical inputs. In this review, the microbial seed coating process and their ability to increase seed performance and protect plants from biotic and abiotic stresses are well discussed and highlighted in sustainable agricultural systems.
Biotechnology ReportsImmunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
15.80
自引率
0.00%
发文量
79
审稿时长
55 days
期刊介绍:
Biotechnology Reports covers all aspects of Biotechnology particularly those reports that are useful and informative and that will be of value to other researchers in related fields. Biotechnology Reports loves ground breaking science, but will also accept good science that can be of use to the biotechnology community. The journal maintains a high quality peer review where submissions are considered on the basis of scientific validity and technical quality. Acceptable paper types are research articles (short or full communications), methods, mini-reviews, and commentaries in the following areas: Healthcare and pharmaceutical biotechnology Agricultural and food biotechnology Environmental biotechnology Molecular biology, cell and tissue engineering and synthetic biology Industrial biotechnology, biofuels and bioenergy Nanobiotechnology Bioinformatics & systems biology New processes and products in biotechnology, bioprocess engineering.