首页 > 最新文献

Biotechnology Reports最新文献

英文 中文
Microalgae strains isolated from piggery wastewater in Ecuador: Effective nitrogen compound removal and growth potential in extremophile conditions
Q1 Immunology and Microbiology Pub Date : 2025-02-10 DOI: 10.1016/j.btre.2025.e00883
Karla Flores-Zambrano , Wilson Tapia , Pablo Castillejo
Effluents generated by anthropogenic activities are a significant source of pollution and eutrophication in natural water bodies. In Ecuador, the increase in pig production has exacerbated this issue due to the untreated discharge of pig effluents. This study focused on the characterization of native microalgae present in pig effluents and the evaluation of their capacity to remove nitrogenous compounds under various conditions, with the aim of identifying efficient strains for phycoremediation. Four microalgal strains were isolated and molecularly identified as Radiococcus polycoccus, Chlorolobion braunii, Micractinium sp., and Desmodesmus multivariabilis. The cultures were exposed to initial concentrations of 100 mg L-1 N-NH₄ and 49.97 mg L-1 N-NO₃ for 12 days to assess their cellular growth and nutrient removal rates. Growth kinetics were analyzed under conditions of 2000 mg L-1 N-NH₄ and extreme pH levels of 3 and 10. Chlorolobion braunii demonstrated the highest productivity, achieving a removal of 67.73 % of N-NH₄ and 30.59 % of N-NO₃, and reached the highest cellular density under extreme ammonium conditions, being the only strain capable of growing at acidic pH. Conversely, Micractinium sp. exhibited the highest growth under alkaline conditions. These results highlight the promising potential of native microalgae from pig effluents for wastewater remediation and their adaptation to environmental conditions.
{"title":"Microalgae strains isolated from piggery wastewater in Ecuador: Effective nitrogen compound removal and growth potential in extremophile conditions","authors":"Karla Flores-Zambrano ,&nbsp;Wilson Tapia ,&nbsp;Pablo Castillejo","doi":"10.1016/j.btre.2025.e00883","DOIUrl":"10.1016/j.btre.2025.e00883","url":null,"abstract":"<div><div>Effluents generated by anthropogenic activities are a significant source of pollution and eutrophication in natural water bodies. In Ecuador, the increase in pig production has exacerbated this issue due to the untreated discharge of pig effluents. This study focused on the characterization of native microalgae present in pig effluents and the evaluation of their capacity to remove nitrogenous compounds under various conditions, with the aim of identifying efficient strains for phycoremediation. Four microalgal strains were isolated and molecularly identified as <em>Radiococcus polycoccus, Chlorolobion braunii, Micractinium</em> sp., and <em>Desmodesmus multivariabilis</em>. The cultures were exposed to initial concentrations of 100 mg L<sup>-1</sup> N-NH₄ and 49.97 mg L<sup>-1</sup> N-NO₃ for 12 days to assess their cellular growth and nutrient removal rates. Growth kinetics were analyzed under conditions of 2000 mg L<sup>-1</sup> N-NH₄ and extreme pH levels of 3 and 10. <em>Chlorolobion braunii</em> demonstrated the highest productivity, achieving a removal of 67.73 % of N-NH₄ and 30.59 % of N-NO₃, and reached the highest cellular density under extreme ammonium conditions, being the only strain capable of growing at acidic pH. Conversely, <em>Micractinium</em> sp. exhibited the highest growth under alkaline conditions. These results highlight the promising potential of native microalgae from pig effluents for wastewater remediation and their adaptation to environmental conditions.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00883"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expanding black soldier fly (BSF; Hermetia illucens; Diptera: Stratiomyidae) in the developing world: Use of BSF larvae as a biological tool to recycle various organic biowastes for alternative protein production in Nepal
Q1 Immunology and Microbiology Pub Date : 2025-02-10 DOI: 10.1016/j.btre.2025.e00879
Bhola Gautam , Sundar Tiwari , Min Raj Pokhrel , Jeffery K. Tomberlin , Prabhat Khanal
The growing global demand for food, particularly animal protein, is intensifying challenges related to food security and environmental sustainability. The increase in organic waste generation, coupled with inefficient waste management, is further deteriorating living conditions by negatively impacting the environment and public health, especially in developing nations. This study investigated the potential of black soldier fly larvae (BSFL) to recycle major daily organic waste fractions in Nepal. BSFL were exposed to seven different biowaste-based substrates locally sourced from fruit and vegetable markets, farms, and food industries. Additionally, the study evaluated rapeseed cake as a supplement to enhance BSFL growth and nutritional content. BSFL survival rates exceeded 80 % on food industry waste but dropped to 63 % on high-moisture substrates like vegetable waste. Mixed vegetable waste (14.7 mg/day) and bakery waste (11.5 mg/day) supported higher average daily weight gain, likely due to their better nutrient values (soluble carbohydrates and proteins). Although rapeseed cake alone hindered larval growth, its supplementation to biowastes improved growth, survival, and bioconversion rates, increased larval protein content up to 32 %, and reduced fat by 36 %. These findings indicate BSFL can effectively recycle diverse, locally available organic wastes in developing countries like Nepal, providing a sustainable source of domestic protein and contributing to feed security. As this is the first BSFL study in Nepal, further research is needed to elucidate the chemical and microbial safety of BSFL reared on biowastes and to develop technical solutions for commercial BSFL production in countries with a low-income economy.
{"title":"Expanding black soldier fly (BSF; Hermetia illucens; Diptera: Stratiomyidae) in the developing world: Use of BSF larvae as a biological tool to recycle various organic biowastes for alternative protein production in Nepal","authors":"Bhola Gautam ,&nbsp;Sundar Tiwari ,&nbsp;Min Raj Pokhrel ,&nbsp;Jeffery K. Tomberlin ,&nbsp;Prabhat Khanal","doi":"10.1016/j.btre.2025.e00879","DOIUrl":"10.1016/j.btre.2025.e00879","url":null,"abstract":"<div><div>The growing global demand for food, particularly animal protein, is intensifying challenges related to food security and environmental sustainability. The increase in organic waste generation, coupled with inefficient waste management, is further deteriorating living conditions by negatively impacting the environment and public health, especially in developing nations. This study investigated the potential of black soldier fly larvae (BSFL) to recycle major daily organic waste fractions in Nepal. BSFL were exposed to seven different biowaste-based substrates locally sourced from fruit and vegetable markets, farms, and food industries. Additionally, the study evaluated rapeseed cake as a supplement to enhance BSFL growth and nutritional content. BSFL survival rates exceeded 80 % on food industry waste but dropped to 63 % on high-moisture substrates like vegetable waste. Mixed vegetable waste (14.7 mg/day) and bakery waste (11.5 mg/day) supported higher average daily weight gain, likely due to their better nutrient values (soluble carbohydrates and proteins). Although rapeseed cake alone hindered larval growth, its supplementation to biowastes improved growth, survival, and bioconversion rates, increased larval protein content up to 32 %, and reduced fat by 36 %. These findings indicate BSFL can effectively recycle diverse, locally available organic wastes in developing countries like Nepal, providing a sustainable source of domestic protein and contributing to feed security. As this is the first BSFL study in Nepal, further research is needed to elucidate the chemical and microbial safety of BSFL reared on biowastes and to develop technical solutions for commercial BSFL production in countries with a low-income economy.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00879"},"PeriodicalIF":0.0,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143429065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quality by design for transient RBD-Fc fusion protein production in Chinese hamster ovary cells
Q1 Immunology and Microbiology Pub Date : 2025-02-09 DOI: 10.1016/j.btre.2025.e00882
Araya Jivapetthai , Wanatchaporn Arunmanee , Natapol Pornputtapong
Quality by design (QbD) is applied to the upstream process to maximize the RBD-Fc fusion protein production in CHO cells. The three factors (culture duration, temperature, and polyethyleneimine to plasmid DNA (PEI-Max/pDNA) ratio) were identified as critical process attributes based on risk analysis (FMEA) and further optimized by response surface to maximize the protein yields. Using a Box-Behnken design, the optimal conditions for RBD-Fc production were determined to be a culture duration of 5 days, a culture temperature of 34.4 °C, and a PEI-Max/pDNA ratio of 4.2:1 (w/w) with a predictive value of 48 mg/L (desirability of 92.8 %). The PEI-Max/pDNA ratio and its interaction with culture duration to express the highest yield (47.78 ± 2.30 mg/l). In addition, the purified CHO-produced RBD-Fc fusion protein was highly pure and strongly bound to its receptor, ACE2. Our finding demonstrated that the QBD tools can identify the critical parameters to facilitate scaling-up production.
{"title":"Quality by design for transient RBD-Fc fusion protein production in Chinese hamster ovary cells","authors":"Araya Jivapetthai ,&nbsp;Wanatchaporn Arunmanee ,&nbsp;Natapol Pornputtapong","doi":"10.1016/j.btre.2025.e00882","DOIUrl":"10.1016/j.btre.2025.e00882","url":null,"abstract":"<div><div>Quality by design (QbD) is applied to the upstream process to maximize the RBD-Fc fusion protein production in CHO cells. The three factors (culture duration, temperature, and polyethyleneimine to plasmid DNA (PEI-Max/pDNA) ratio) were identified as critical process attributes based on risk analysis (FMEA) and further optimized by response surface to maximize the protein yields. Using a Box-Behnken design, the optimal conditions for RBD-Fc production were determined to be a culture duration of 5 days, a culture temperature of 34.4 °C, and a PEI-Max/pDNA ratio of 4.2:1 (w/w) with a predictive value of 48 mg/L (desirability of 92.8 %). The PEI-Max/pDNA ratio and its interaction with culture duration to express the highest yield (47.78 ± 2.30 mg/l). In addition, the purified CHO-produced RBD-Fc fusion protein was highly pure and strongly bound to its receptor, ACE2. Our finding demonstrated that the QBD tools can identify the critical parameters to facilitate scaling-up production.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00882"},"PeriodicalIF":0.0,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of phytochemical profiling and computational approaches to evaluate the neuroprotective potential of Nardostachys jatamansi in Alzheimer's disease
Q1 Immunology and Microbiology Pub Date : 2025-02-08 DOI: 10.1016/j.btre.2025.e00881
Abdul Jalil Shah , Mohammad Younis Dar , Mohd Adnan , Tanmaykumar Varma , Dhairiya Agarwal , Prabha Garg , Reyaz Hassan Mir , Rampratap Meena , Mubashir Hussain Masoodi
Despite broad spectrum utility of Nardostachys jatamansi (D. Don) DC, little is known about the molecular processes that underlie its anti-Alzheimer action. To investigate the molecular targets and therapeutic potential of N. jatamansi for Alzheimer's disease (AD), we used Gas Chromatography-Mass Spectrometry (GC-MS), ADMET analysis, network pharmacology, differential gene expression analysis, molecular docking, and molecular dynamics (MD) simulations. The STITCH database was used for network creation and protein-protein interaction analysis, while Cytoscape was used for network visualization and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) for term enrichment. Additionally, to investigate the intermolecular interactions between the active chemicals and target proteins, molecular docking experiments were conducted using the Blind docking on the Achilles server. The stability of the PS1 gene complex with Spirojatamol, was further evaluated using MD simulations. With Spirojatamol showing the highest binding energy scores against PS1 (−6.9 kcal/mol), molecular docking confirmed the activity of this metabolite against AD targets PS1 and Spirojatamol formed a stable complex at 100 nanoseconds, according to additional investigation using MD simulations. Significant ligand-protein interactions were verified by binding free energy calculations using the MM/GBSA technique. The PS1-Spirojatamol complex had a binding energy of ΔG: −36.95 ± 5.00 kcal/mol. By focusing on several genes and pathways, involved in AD, this work reveals the molecular underpinnings behind N. jatamansi possible use in the treatment of AD.
{"title":"Integration of phytochemical profiling and computational approaches to evaluate the neuroprotective potential of Nardostachys jatamansi in Alzheimer's disease","authors":"Abdul Jalil Shah ,&nbsp;Mohammad Younis Dar ,&nbsp;Mohd Adnan ,&nbsp;Tanmaykumar Varma ,&nbsp;Dhairiya Agarwal ,&nbsp;Prabha Garg ,&nbsp;Reyaz Hassan Mir ,&nbsp;Rampratap Meena ,&nbsp;Mubashir Hussain Masoodi","doi":"10.1016/j.btre.2025.e00881","DOIUrl":"10.1016/j.btre.2025.e00881","url":null,"abstract":"<div><div>Despite broad spectrum utility of <em>Nardostachys jatamansi</em> (D. Don) DC, little is known about the molecular processes that underlie its anti-Alzheimer action. To investigate the molecular targets and therapeutic potential of <em>N. jatamansi</em> for Alzheimer's disease (AD), we used Gas Chromatography-Mass Spectrometry (GC-MS), ADMET analysis, network pharmacology, differential gene expression analysis, molecular docking, and molecular dynamics (MD) simulations. The STITCH database was used for network creation and protein-protein interaction analysis, while Cytoscape was used for network visualization and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) for term enrichment. Additionally, to investigate the intermolecular interactions between the active chemicals and target proteins, molecular docking experiments were conducted using the Blind docking on the Achilles server. The stability of the PS1 gene complex with Spirojatamol, was further evaluated using MD simulations. With Spirojatamol showing the highest binding energy scores against PS1 (−6.9 kcal/mol), molecular docking confirmed the activity of this metabolite against AD targets PS1 and Spirojatamol formed a stable complex at 100 nanoseconds, according to additional investigation using MD simulations. Significant ligand-protein interactions were verified by binding free energy calculations using the MM/GBSA technique. The PS1-Spirojatamol complex had a binding energy of ΔG: −36.95 ± 5.00 kcal/mol. By focusing on several genes and pathways, involved in AD, this work reveals the molecular underpinnings behind <em>N. jatamansi</em> possible use in the treatment of AD.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00881"},"PeriodicalIF":0.0,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143419171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salinity induced changes in esterase, peroxidase and alcohol dehydrogenase isozymes and leaf soluble proteins in salinity susceptible and salinity tolerant sugarcane genotypes
Q1 Immunology and Microbiology Pub Date : 2025-02-05 DOI: 10.1016/j.btre.2025.e00880
Manisha Rameshrao Patil , A.A. Kale , Ajay Kumar Singh , Priyanka Rameshrao Patil , Shaheen Badshah Inamdar , R.D. Satbhai
The salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 were evaluated for Peroxidase (POX), Esterase (EST) and Alcohol Dehydrogenase (ADH) isozymes and soluble protein profiling by SDS and native-PAGE at salinity levels 0.41 dSm-1, 2.31 dSm-1, 4.21 dSm-1, and 8.01 dSm-1 maintained by NaCl solution. The plant height, number of leaves and seedling diameter got reduced in salinity susceptible sugarcane genotype CoC-671 as well as salinity tolerant sugarcane genotype CoM-265 with increase in salinity levels. However, reduction in plant height, number of leaves and seedling diameter was less in salinity tolerant sugarcane genotype CoM-265 as compared to salinity susceptible sugarcane genotype CoC-671. The POX isozyme profiling revealed that salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 had variation in soluble protein band intensity at different salinity levels with relative mobility (Rm) 0.137. The present study could be useful for genetic variability analysis in sugarcane genotypes differing in salinity stress tolerance capability.
{"title":"Salinity induced changes in esterase, peroxidase and alcohol dehydrogenase isozymes and leaf soluble proteins in salinity susceptible and salinity tolerant sugarcane genotypes","authors":"Manisha Rameshrao Patil ,&nbsp;A.A. Kale ,&nbsp;Ajay Kumar Singh ,&nbsp;Priyanka Rameshrao Patil ,&nbsp;Shaheen Badshah Inamdar ,&nbsp;R.D. Satbhai","doi":"10.1016/j.btre.2025.e00880","DOIUrl":"10.1016/j.btre.2025.e00880","url":null,"abstract":"<div><div>The salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 were evaluated for Peroxidase (POX), Esterase (EST) and Alcohol Dehydrogenase (ADH) isozymes and soluble protein profiling by SDS and native-PAGE at salinity levels 0.41 dSm<sup>-1</sup>, 2.31 dSm<sup>-1</sup>, 4.21 dSm<sup>-1</sup>, and 8.01 dSm<sup>-1</sup> maintained by NaCl solution. The plant height, number of leaves and seedling diameter got reduced in salinity susceptible sugarcane genotype CoC-671 as well as salinity tolerant sugarcane genotype CoM-265 with increase in salinity levels. However, reduction in plant height, number of leaves and seedling diameter was less in salinity tolerant sugarcane genotype CoM-265 as compared to salinity susceptible sugarcane genotype CoC-671. The POX isozyme profiling revealed that salinity susceptible CoC-671 and salinity tolerant sugarcane genotype CoM-265 had variation in soluble protein band intensity at different salinity levels with relative mobility (Rm) 0.137. The present study could be useful for genetic variability analysis in sugarcane genotypes differing in salinity stress tolerance capability.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00880"},"PeriodicalIF":0.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143429064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and purification of a novel bacteriophage T7 endonuclease from the Kogelberg Biosphere Reserve (KBR) biodiversity hotspot
Q1 Immunology and Microbiology Pub Date : 2025-01-23 DOI: 10.1016/j.btre.2025.e00877
Priyen Pillay , Maabo Moralo , Sibongile Mtimka , Taola Shai , Kirsty Botha , Lusisizwe Kwezi , Tsepo L. Tsekoa
The four-way (Holliday) DNA junction is a key intermediate in homologous recombination, a ubiquitous process that is important in DNA repair and generation of genetic diversity. The final stages of recombination require resolution of the junction into nicked-duplex species by the action of a junction-resolving enzyme. The enzymes involved are nucleases that are highly selective for the structure of branched DNA. Here we present the isolation, expression and purification of a novel T7 endonuclease from the Kogelberg Biosphere Reserve (KBR), which possesses junction resolving capabilities. An initial approach was employed where the process was scaled up to 3 L with IPTG concentration of 0.1 mM at 30 °C and purified via immobilised metal affinity chromatography (IMAC). Expression titres of 20 ± 0.003 µg.L-1 culture were achieved with the amount of KBR-T7 endonuclease required per reaction ranging from as low as 10 to 100 nanograms. The solubility of the enzyme was relatively poor; however, enzyme activity was not affected. A derivative for improved solubility and efficacy was then designed from this original wild-type version, MBP-KBR-T7 and was expressed under similar conditions at 20 °C yielding 1.63 ± 0.154 mg.L-1 of formulated enzyme. This novel high value enzyme derivative is a valuable asset within the molecular reagent space as a tool for confirming both in vivo and in vitro genome editing; therefore, a means to produce it recombinantly in a scalable and technoeconomicaly viable process is highly desirable.
{"title":"Identification and purification of a novel bacteriophage T7 endonuclease from the Kogelberg Biosphere Reserve (KBR) biodiversity hotspot","authors":"Priyen Pillay ,&nbsp;Maabo Moralo ,&nbsp;Sibongile Mtimka ,&nbsp;Taola Shai ,&nbsp;Kirsty Botha ,&nbsp;Lusisizwe Kwezi ,&nbsp;Tsepo L. Tsekoa","doi":"10.1016/j.btre.2025.e00877","DOIUrl":"10.1016/j.btre.2025.e00877","url":null,"abstract":"<div><div>The four-way (Holliday) DNA junction is a key intermediate in homologous recombination, a ubiquitous process that is important in DNA repair and generation of genetic diversity. The final stages of recombination require resolution of the junction into nicked-duplex species by the action of a junction-resolving enzyme. The enzymes involved are nucleases that are highly selective for the structure of branched DNA. Here we present the isolation, expression and purification of a novel T7 endonuclease from the Kogelberg Biosphere Reserve (KBR), which possesses junction resolving capabilities. An initial approach was employed where the process was scaled up to 3 L with IPTG concentration of 0.1 mM at 30 °C and purified via immobilised metal affinity chromatography (IMAC). Expression titres of 20 ± 0.003 µg.L<sup>-1</sup> culture were achieved with the amount of KBR-T7 endonuclease required per reaction ranging from as low as 10 to 100 nanograms. The solubility of the enzyme was relatively poor; however, enzyme activity was not affected. A derivative for improved solubility and efficacy was then designed from this original wild-type version, MBP-KBR-T7 and was expressed under similar conditions at 20 °C yielding 1.63 ± 0.154 mg.L<sup>-1</sup> of formulated enzyme. This novel high value enzyme derivative is a valuable asset within the molecular reagent space as a tool for confirming both <em>in vivo</em> and <em>in vitro</em> genome editing; therefore, a means to produce it recombinantly in a scalable and technoeconomicaly viable process is highly desirable.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00877"},"PeriodicalIF":0.0,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis of bromoform by Curvularia fungi provides a natural pathway to mitigate enteric methane emissions from ruminants
Q1 Immunology and Microbiology Pub Date : 2025-01-14 DOI: 10.1016/j.btre.2025.e00876
Thomas Loan , Avinash Karpe , Saeid Babaei , Stuart Denman , Chunghong Chen , Matthias Joust , Kristy Lam , Dawar Hussain , Sapna Pillai Vibhakaran , Matthew Callaghan , Abed Chaudhury , Karen Paco , Nigel Tomkins , Tristan Yang , Stephanie Payne , Michael Ayliffe , Ming Luo
The ruminant livestock industry is the largest agricultural emissions source of anthropogenic greenhouse gases, primarily from enteric methane. Several technologies, both natural and synthetic are being investigated to mitigate enteric methane emissions. Macroalgae derived feed ingredients that contain bromoform, a recognised inhibitor of methanogenesis, are an effective natural approach for methane mitigation. However, producing sufficient biomass economically to satisfy the livestock industry at a global scale is challenging. Here we demonstrate that a Curvularia soil fungi isolate can be cultured to produce bromoform and subsequently inhibit methanogenesis in pure cultures of Methanobrevibacter smithii and in mixed cultures of ovine rumen fluid. This highly culturable fungal species produces no known toxins and creates an exciting new, scalable and natural alternative for reducing ruminant livestock emissions.
{"title":"Biosynthesis of bromoform by Curvularia fungi provides a natural pathway to mitigate enteric methane emissions from ruminants","authors":"Thomas Loan ,&nbsp;Avinash Karpe ,&nbsp;Saeid Babaei ,&nbsp;Stuart Denman ,&nbsp;Chunghong Chen ,&nbsp;Matthias Joust ,&nbsp;Kristy Lam ,&nbsp;Dawar Hussain ,&nbsp;Sapna Pillai Vibhakaran ,&nbsp;Matthew Callaghan ,&nbsp;Abed Chaudhury ,&nbsp;Karen Paco ,&nbsp;Nigel Tomkins ,&nbsp;Tristan Yang ,&nbsp;Stephanie Payne ,&nbsp;Michael Ayliffe ,&nbsp;Ming Luo","doi":"10.1016/j.btre.2025.e00876","DOIUrl":"10.1016/j.btre.2025.e00876","url":null,"abstract":"<div><div>The ruminant livestock industry is the largest agricultural emissions source of anthropogenic greenhouse gases, primarily from enteric methane. Several technologies, both natural and synthetic are being investigated to mitigate enteric methane emissions. Macroalgae derived feed ingredients that contain bromoform, a recognised inhibitor of methanogenesis, are an effective natural approach for methane mitigation. However, producing sufficient biomass economically to satisfy the livestock industry at a global scale is challenging. Here we demonstrate that a <em>Curvularia</em> soil fungi isolate can be cultured to produce bromoform and subsequently inhibit methanogenesis in pure cultures of <em>Methanobrevibacter smithii</em> and in mixed cultures of ovine rumen fluid. This highly culturable fungal species produces no known toxins and creates an exciting new, scalable and natural alternative for reducing ruminant livestock emissions.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00876"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungal – assisted microalgae flocculation and simultaneous lignocellulolytic enzyme production in wastewater treatment systems
Q1 Immunology and Microbiology Pub Date : 2025-01-10 DOI: 10.1016/j.btre.2025.e00875
Anna Civzele, Linda Mezule
The study investigates the application of white rot fungi for reactor–scale microalgae harvesting and explores the mechanisms underlying the algal–fungal interactions and their impact on biomass composition. Enzymatic analysis and microscopy revealed that the formation of algal-fungal complexes and successful harvesting are coupled with fungal cellulose-degrading enzyme production and hydrolytic processes of microalgae cells. Fluorescence intensity decreased by over 80 % in cells stained with Calcofluor-white after interaction with white rot fungi, indicating the reduction in cellulose content in microalgal cells caused by fungal enzymatic activity. These enzymes also caused significant cell damage and more than 50 % decrease in microalgae cell size. The presence of cellulolytic enzymes broadens the potential application of the resulting biomass in various biotechnological applications. Moreover, reactor-scale bioflocculation resulted in over 95 % T. obliquus and almost 85 % C. vulgaris harvesting efficiency from secondary wastewater within less than 24 h, demonstrating the method's scalability and industrial applicability.
{"title":"Fungal – assisted microalgae flocculation and simultaneous lignocellulolytic enzyme production in wastewater treatment systems","authors":"Anna Civzele,&nbsp;Linda Mezule","doi":"10.1016/j.btre.2025.e00875","DOIUrl":"10.1016/j.btre.2025.e00875","url":null,"abstract":"<div><div>The study investigates the application of white rot fungi for reactor–scale microalgae harvesting and explores the mechanisms underlying the algal–fungal interactions and their impact on biomass composition. Enzymatic analysis and microscopy revealed that the formation of algal-fungal complexes and successful harvesting are coupled with fungal cellulose-degrading enzyme production and hydrolytic processes of microalgae cells. Fluorescence intensity decreased by over 80 % in cells stained with Calcofluor-white after interaction with white rot fungi, indicating the reduction in cellulose content in microalgal cells caused by fungal enzymatic activity. These enzymes also caused significant cell damage and more than 50 % decrease in microalgae cell size. The presence of cellulolytic enzymes broadens the potential application of the resulting biomass in various biotechnological applications. Moreover, reactor-scale bioflocculation resulted in over 95 % <em>T. obliquus</em> and almost 85 % <em>C. vulgaris</em> harvesting efficiency from secondary wastewater within less than 24 h, demonstrating the method's scalability and industrial applicability.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00875"},"PeriodicalIF":0.0,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143103880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cobalt phosphide-loaded biochar synthesis using phosphate-accumulating yeast and its application as an electrocatalyst
Q1 Immunology and Microbiology Pub Date : 2025-01-09 DOI: 10.1016/j.btre.2025.e00874
Yoshihiro Ojima , Riho Akiyoshi , Itto Tokiwa , Takashi Nakazono , Yusuke Yamada , Masayuki Azuma
A phosphorus (P)-accumulating mutant strain of Saccharomyces cerevisiae is used as a precursor for transition metal phosphides (TMPs) biochar. Tetrahydrofuran treatment of the P-accumulating yeast coupled with pyrolysis resulted in the formation of CoP-loaded biochar (CoP@P-yeast) unlike previously reported Co2P-loaded biochar using dry baker's yeast. The CoP@P-yeast exhibited the electrocatalytic activity for the hydrogen evolution with an overpotential of −192 mV at 10 mA cm−2. Furthermore, the CoP@P-yeast showed the highest ammonia production rate of 33 mg-NH3 h−1 mg-catalyst−1 in nitrate reduction reaction, as well as much higher than that with platinum on graphitized carbon. Scanning electron microscopy and transmission electron microscopy observations revealed that relatively large TMP crystals mainly located at the biochar surface, which may be beneficial to avoid catalytic deterioration during the nitrate reduction reaction. This study demonstrates that P-accumulating mutant strain of yeast is a suitable precursor to improve the activity of the resulting TMP biochar.
{"title":"Cobalt phosphide-loaded biochar synthesis using phosphate-accumulating yeast and its application as an electrocatalyst","authors":"Yoshihiro Ojima ,&nbsp;Riho Akiyoshi ,&nbsp;Itto Tokiwa ,&nbsp;Takashi Nakazono ,&nbsp;Yusuke Yamada ,&nbsp;Masayuki Azuma","doi":"10.1016/j.btre.2025.e00874","DOIUrl":"10.1016/j.btre.2025.e00874","url":null,"abstract":"<div><div>A phosphorus (P)-accumulating mutant strain of <em>Saccharomyces cerevisiae</em> is used as a precursor for transition metal phosphides (TMPs) biochar. Tetrahydrofuran treatment of the P-accumulating yeast coupled with pyrolysis resulted in the formation of CoP-loaded biochar (CoP@P-yeast) unlike previously reported Co<sub>2</sub>P-loaded biochar using dry baker's yeast. The CoP@P-yeast exhibited the electrocatalytic activity for the hydrogen evolution with an overpotential of −192 mV at 10 mA cm<sup>−2</sup>. Furthermore, the CoP@P-yeast showed the highest ammonia production rate of 33 mg-NH<sub>3</sub> h<sup>−1</sup> mg-catalyst<sup>−1</sup> in nitrate reduction reaction, as well as much higher than that with platinum on graphitized carbon. Scanning electron microscopy and transmission electron microscopy observations revealed that relatively large TMP crystals mainly located at the biochar surface, which may be beneficial to avoid catalytic deterioration during the nitrate reduction reaction. This study demonstrates that P-accumulating mutant strain of yeast is a suitable precursor to improve the activity of the resulting TMP biochar.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00874"},"PeriodicalIF":0.0,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787416/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143081538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of agro-industrial waste through solid-state fermentation: Mini review
Q1 Immunology and Microbiology Pub Date : 2024-12-30 DOI: 10.1016/j.btre.2024.e00873
Mohammad Perwez , Sameer Al Asheh
Agriculture and industrial waste are produced in large volumes every year worldwide, causing serious concerns about their disposal. These wastes have high organic content, which microorganisms can easily assimilate into relevant value-added products. Valorization of agro-industrial waste is required for sustainable development. Solid state fermentation is an excellent method of utilizing waste for circular bioeconomy. Exploitation of agro-industrial waste as a substrate utilizing microorganisms for solid state fermentation provides beneficial products for use in industries and other fields. The use of waste reduces the cost of production of value-added products. This method is an environmentally friendly, economical and feasible approach for waste management. This review discusses the factors affecting the production of value-added products through solid state fermentation. It also discusses the valuable products from solid state fermentation technology, such as antibiotics, enzymes, organic acids, bioremediation, biosurfactants and biofertilizers. Challenges and future prospects are also presented.
{"title":"Valorization of agro-industrial waste through solid-state fermentation: Mini review","authors":"Mohammad Perwez ,&nbsp;Sameer Al Asheh","doi":"10.1016/j.btre.2024.e00873","DOIUrl":"10.1016/j.btre.2024.e00873","url":null,"abstract":"<div><div>Agriculture and industrial waste are produced in large volumes every year worldwide, causing serious concerns about their disposal. These wastes have high organic content, which microorganisms can easily assimilate into relevant value-added products. Valorization of agro-industrial waste is required for sustainable development. Solid state fermentation is an excellent method of utilizing waste for circular bioeconomy. Exploitation of agro-industrial waste as a substrate utilizing microorganisms for solid state fermentation provides beneficial products for use in industries and other fields. The use of waste reduces the cost of production of value-added products. This method is an environmentally friendly, economical and feasible approach for waste management. This review discusses the factors affecting the production of value-added products through solid state fermentation. It also discusses the valuable products from solid state fermentation technology, such as antibiotics, enzymes, organic acids, bioremediation, biosurfactants and biofertilizers. Challenges and future prospects are also presented.</div></div>","PeriodicalId":38117,"journal":{"name":"Biotechnology Reports","volume":"45 ","pages":"Article e00873"},"PeriodicalIF":0.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780145/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biotechnology Reports
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1