{"title":"Resting-state network predicts the decision-making behaviors of the proposer during the ultimatum game.","authors":"Yuqin Li, Qian Yang, Yuxin Liu, Rui Wang, Yutong Zheng, Yubo Zhang, Yajing Si, Lin Jiang, Baodan Chen, Yueheng Peng, Feng Wan, Jing Yu, Dezhong Yao, Fali Li, Baoming He, Peng Xu","doi":"10.1088/1741-2552/acf61e","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer's decision-making is a crucial issue. Yet the neural substrate of the proposer's decision behavior, especially from the resting-state network perspective, remains unclear.<i>Approach</i>. In this study, we investigated the relationship between the resting-state network and decision proposals and further established a multivariable model to predict the proposers' unfair offer rates in the ultimatum game.<i>Main results.</i>The results indicated the unfair offer rates of proposers are significantly related to the resting-state frontal-occipital and frontal-parietal connectivity in the delta band, as well as the network properties. And compared to the conservative decision group (low unfair offer rate), the risk decision group (high unfair offer rate) exhibited stronger resting-state long-range linkages. Finally, the established multivariable model did accurately predict the unfair offer rates of the proposers, along with a correlation coefficient of 0.466 between the actual and predicted behaviors.<i>Significance</i>. Together, these findings demonstrated that related resting-state frontal-occipital and frontal-parietal connectivity may serve as a dispositional indicator of the risky behaviors for the proposers and subsequently predict a highly complex decision-making behavior, which contributed to the development of artificial intelligence decision-making system with biological characteristics as well.</p>","PeriodicalId":16753,"journal":{"name":"Journal of neural engineering","volume":"20 5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1741-2552/acf61e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective. The decision-making behavior of the proposer is a key factor in achieving effective and equitable maintenance of social resources, particularly in economic interactions, and thus understanding the neurocognitive basis of the proposer's decision-making is a crucial issue. Yet the neural substrate of the proposer's decision behavior, especially from the resting-state network perspective, remains unclear.Approach. In this study, we investigated the relationship between the resting-state network and decision proposals and further established a multivariable model to predict the proposers' unfair offer rates in the ultimatum game.Main results.The results indicated the unfair offer rates of proposers are significantly related to the resting-state frontal-occipital and frontal-parietal connectivity in the delta band, as well as the network properties. And compared to the conservative decision group (low unfair offer rate), the risk decision group (high unfair offer rate) exhibited stronger resting-state long-range linkages. Finally, the established multivariable model did accurately predict the unfair offer rates of the proposers, along with a correlation coefficient of 0.466 between the actual and predicted behaviors.Significance. Together, these findings demonstrated that related resting-state frontal-occipital and frontal-parietal connectivity may serve as a dispositional indicator of the risky behaviors for the proposers and subsequently predict a highly complex decision-making behavior, which contributed to the development of artificial intelligence decision-making system with biological characteristics as well.
期刊介绍:
The goal of Journal of Neural Engineering (JNE) is to act as a forum for the interdisciplinary field of neural engineering where neuroscientists, neurobiologists and engineers can publish their work in one periodical that bridges the gap between neuroscience and engineering. The journal publishes articles in the field of neural engineering at the molecular, cellular and systems levels.
The scope of the journal encompasses experimental, computational, theoretical, clinical and applied aspects of: Innovative neurotechnology; Brain-machine (computer) interface; Neural interfacing; Bioelectronic medicines; Neuromodulation; Neural prostheses; Neural control; Neuro-rehabilitation; Neurorobotics; Optical neural engineering; Neural circuits: artificial & biological; Neuromorphic engineering; Neural tissue regeneration; Neural signal processing; Theoretical and computational neuroscience; Systems neuroscience; Translational neuroscience; Neuroimaging.