Enhancing Precision and Efficiency of Cas9-Mediated Knockin Through Combinatorial Fusions of DNA Repair Proteins.

IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY CRISPR Journal Pub Date : 2023-10-01 Epub Date: 2023-09-15 DOI:10.1089/crispr.2023.0036
Ryan R Richardson, Marilyn Steyert, Saovleak N Khim, Garrett W Crutcher, Cheryl Brandenburg, Colin D Robertson, Andrea J Romanowski, Jeffrey Inen, Bekir Altas, Alexandros Poulopoulos
{"title":"Enhancing Precision and Efficiency of Cas9-Mediated Knockin Through Combinatorial Fusions of DNA Repair Proteins.","authors":"Ryan R Richardson, Marilyn Steyert, Saovleak N Khim, Garrett W Crutcher, Cheryl Brandenburg, Colin D Robertson, Andrea J Romanowski, Jeffrey Inen, Bekir Altas, Alexandros Poulopoulos","doi":"10.1089/crispr.2023.0036","DOIUrl":null,"url":null,"abstract":"<p><p>Cas9 targets genomic loci with high specificity. For knockin with double-strand break repair, however, Cas9 often leads to unintended on-target knockout rather than intended edits. This imprecision is a barrier for direct <i>in vivo</i> editing where clonal selection is not feasible. In this study, we demonstrate a high-throughput workflow to comparatively assess on-target efficiency and precision of editing outcomes. Using this workflow, we screened combinations of donor DNA and Cas9 variants, as well as fusions to DNA repair proteins. This yielded novel high-performance double-strand break repair editing agents and combinatorial optimizations, yielding increases in knockin efficiency and precision. Cas9-RC, a novel fusion Cas9 flanked by eRad18 and CtIP<sup>[HE]</sup>, increased knockin performance <i>in vitro</i> and <i>in vivo</i> in the developing mouse brain. Continued comparative assessment of editing efficiency and precision with this framework will further the development of high-performance editing agents for <i>in vivo</i> knockin and future genome therapeutics.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"447-461"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10611978/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2023.0036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Cas9 targets genomic loci with high specificity. For knockin with double-strand break repair, however, Cas9 often leads to unintended on-target knockout rather than intended edits. This imprecision is a barrier for direct in vivo editing where clonal selection is not feasible. In this study, we demonstrate a high-throughput workflow to comparatively assess on-target efficiency and precision of editing outcomes. Using this workflow, we screened combinations of donor DNA and Cas9 variants, as well as fusions to DNA repair proteins. This yielded novel high-performance double-strand break repair editing agents and combinatorial optimizations, yielding increases in knockin efficiency and precision. Cas9-RC, a novel fusion Cas9 flanked by eRad18 and CtIP[HE], increased knockin performance in vitro and in vivo in the developing mouse brain. Continued comparative assessment of editing efficiency and precision with this framework will further the development of high-performance editing agents for in vivo knockin and future genome therapeutics.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过DNA修复蛋白的组合融合提高Cas9介导的Knockin的准确性和效率。
Cas9以高特异性靶向基因组基因座。然而,对于双链断裂修复的敲除,Cas9通常会导致非预期的靶向敲除,而不是预期的编辑。这种不精确性是克隆选择不可行的直接体内编辑的障碍。在这项研究中,我们展示了一种高通量的工作流程,以比较评估编辑结果的目标效率和精度。利用这一工作流程,我们筛选了供体DNA和Cas9变体的组合,以及DNA修复蛋白的融合。这产生了新的高性能双链断裂修复编辑剂和组合优化,提高了敲除效率和精度。Cas9 RC是一种新的融合Cas9,两侧为eRad18和CtIP[HE],在发育中的小鼠大脑中提高了体外和体内的敲除性能。利用该框架对编辑效率和准确性进行持续的比较评估,将进一步开发用于体内敲除和未来基因组治疗的高性能编辑剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CRISPR Journal
CRISPR Journal Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍: In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR. Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.
期刊最新文献
Engineering CjCas9 for Efficient Base Editing and Prime Editing. CRISPR-Cas9-Mediated Targeting of Multidrug Resistance Genes in Methicillin-Resistant Staphylococcus aureus. Early Detection of Wildlife Disease Pathogens Using CRISPR-Cas System Methods. CRISPR-GRIT: Guide RNAs with Integrated Repair Templates Enable Precise Multiplexed Genome Editing in the Diploid Fungal Pathogen Candida albicans. Genome Editing in Apicomplexan Parasites: Current Status, Challenges, and Future Possibilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1