Calorie restriction, but not Roux-en-Y gastric bypass surgery, increases [3 H] PK11195 binding in a rat model of obesity.

IF 1.6 4区 医学 Q4 NEUROSCIENCES Synapse Pub Date : 2023-03-01 DOI:10.1002/syn.22258
John Hamilton, Cynthia Nguyen, Margaret McAvoy, Nicole Roeder, Brittany Richardson, Teresa Quattrin, Andras Hajnal, Panayotis K Thanos
{"title":"Calorie restriction, but not Roux-en-Y gastric bypass surgery, increases [<sup>3</sup> H] PK11195 binding in a rat model of obesity.","authors":"John Hamilton,&nbsp;Cynthia Nguyen,&nbsp;Margaret McAvoy,&nbsp;Nicole Roeder,&nbsp;Brittany Richardson,&nbsp;Teresa Quattrin,&nbsp;Andras Hajnal,&nbsp;Panayotis K Thanos","doi":"10.1002/syn.22258","DOIUrl":null,"url":null,"abstract":"<p><p>Roux-en-Y gastric bypass surgery (RYGB) remains an effective weight-loss method used to treat obesity. While it is successful in combating obesity, there are many lingering questions related to the changes in the brain following RYGB surgery, one of them being its effects on neuroinflammation. While it is known that chronic high-fat diet (HFD) contributes to obesity and neuroinflammation, it remains to be understood whether bariatric surgery can ameliorate diet-induced inflammatory responses. To examine this, rats were assigned to either a normal diet (ND) or a HFD for 8 weeks. Rats fed a HFD were split into the following groups: sham surgery with ad libitum access to HFD (sham-HF); sham surgery with calorie-restricted HFD (sham-FR); RYGB surgery with ad libitum access to HFD (RYGB). Following sham or RYGB surgeries, rats were maintained on their diets for 9 weeks before being euthanized. [<sup>3</sup> H] PK11195 autoradiography was then performed on fresh-frozen brain tissue in order to measure activated microglia. Sham-FR rats showed increased [<sup>3</sup> H] PK11195 binding in the amygdala (63%), perirhinal (60%), and ectorhinal cortex (53%) compared with the ND rats. Obese rats who had the RYGB surgery did not show this increased inflammatory effect. Since the sham-FR and RYGB rats were fed the same amount of HFD, the surgery itself seems responsible for this attenuation in [<sup>3</sup> H] PK11195 binding. We speculate that calorie restriction following obese conditions may be seen as a stressor and contribute to inflammation in the brain. Further research is needed to verify this mechanism.</p>","PeriodicalId":22131,"journal":{"name":"Synapse","volume":"77 2","pages":"e22258"},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synapse","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/syn.22258","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Roux-en-Y gastric bypass surgery (RYGB) remains an effective weight-loss method used to treat obesity. While it is successful in combating obesity, there are many lingering questions related to the changes in the brain following RYGB surgery, one of them being its effects on neuroinflammation. While it is known that chronic high-fat diet (HFD) contributes to obesity and neuroinflammation, it remains to be understood whether bariatric surgery can ameliorate diet-induced inflammatory responses. To examine this, rats were assigned to either a normal diet (ND) or a HFD for 8 weeks. Rats fed a HFD were split into the following groups: sham surgery with ad libitum access to HFD (sham-HF); sham surgery with calorie-restricted HFD (sham-FR); RYGB surgery with ad libitum access to HFD (RYGB). Following sham or RYGB surgeries, rats were maintained on their diets for 9 weeks before being euthanized. [3 H] PK11195 autoradiography was then performed on fresh-frozen brain tissue in order to measure activated microglia. Sham-FR rats showed increased [3 H] PK11195 binding in the amygdala (63%), perirhinal (60%), and ectorhinal cortex (53%) compared with the ND rats. Obese rats who had the RYGB surgery did not show this increased inflammatory effect. Since the sham-FR and RYGB rats were fed the same amount of HFD, the surgery itself seems responsible for this attenuation in [3 H] PK11195 binding. We speculate that calorie restriction following obese conditions may be seen as a stressor and contribute to inflammation in the brain. Further research is needed to verify this mechanism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在肥胖大鼠模型中,热量限制,而不是Roux-en-Y胃旁路手术,增加了PK11195的[3 H]结合。
Roux-en-Y胃旁路手术(RYGB)仍然是治疗肥胖的有效减肥方法。虽然它在对抗肥胖方面取得了成功,但RYGB手术后大脑的变化仍有许多悬而未决的问题,其中之一是它对神经炎症的影响。虽然已知慢性高脂肪饮食(HFD)会导致肥胖和神经炎症,但减肥手术是否能改善饮食诱导的炎症反应仍有待了解。为了检验这一点,大鼠被分配到正常饮食(ND)或高热量饮食8周。喂食HFD的大鼠分为以下组:假手术和自由获取HFD (sham- hf);假手术与限制热量的HFD (sham- fr);RYGB手术与自由进入HFD (RYGB)。假手术或RYGB手术后,大鼠在安乐死前维持其饮食9周。[3 H]然后对新鲜冷冻的脑组织进行PK11195放射自显影以测量活化的小胶质细胞。与ND大鼠相比,Sham-FR大鼠的杏仁核(63%)、鼻周(60%)和鼻外皮层(53%)的[3 H] PK11195结合增加。接受RYGB手术的肥胖大鼠没有表现出这种增加的炎症效应。由于sham-FR大鼠和RYGB大鼠被喂食相同量的HFD,手术本身似乎对[3 H] PK11195结合的衰减负责。我们推测,肥胖后的卡路里限制可能被视为一种压力源,并导致大脑炎症。需要进一步的研究来验证这一机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Synapse
Synapse 医学-神经科学
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
4-8 weeks
期刊介绍: SYNAPSE publishes articles concerned with all aspects of synaptic structure and function. This includes neurotransmitters, neuropeptides, neuromodulators, receptors, gap junctions, metabolism, plasticity, circuitry, mathematical modeling, ion channels, patch recording, single unit recording, development, behavior, pathology, toxicology, etc.
期刊最新文献
Correction to "Role of M4-receptor cholinergic signaling in direct pathway striatal projection neurons during dopamine depletion". Harnessing Miniscope Imaging in Freely Moving Animals to Unveil Migraine Pathophysiology and Validate Novel Therapeutic Strategies. ERK1/2 Regulates Epileptic Seizures by Modulating the DRP1‐Mediated Mitochondrial Dynamic microRNA-125b-5p alleviated CCI-induced neuropathic pain and modulated neuroinflammation via targeting SOX11. Calsyntenin-1 expression and function in brain tissue of lithium-pilocarpine rat seizure models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1