Automated malarial retinopathy detection using transfer learning and multi-camera retinal images

IF 5.3 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biocybernetics and Biomedical Engineering Pub Date : 2023-01-01 DOI:10.1016/j.bbe.2022.12.003
Aswathy Rajendra Kurup , Jeff Wigdahl , Jeremy Benson , Manel Martínez-Ramón , Peter Solíz , Vinayak Joshi
{"title":"Automated malarial retinopathy detection using transfer learning and multi-camera retinal images","authors":"Aswathy Rajendra Kurup ,&nbsp;Jeff Wigdahl ,&nbsp;Jeremy Benson ,&nbsp;Manel Martínez-Ramón ,&nbsp;Peter Solíz ,&nbsp;Vinayak Joshi","doi":"10.1016/j.bbe.2022.12.003","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Cerebral malaria (CM) is a fatal syndrome found commonly in children less than 5 years old in Sub-saharan Africa and Asia. The retinal signs associated with CM are known as malarial retinopathy (MR), and they include highly specific retinal lesions such as whitening and hemorrhages. Detecting these lesions allows the detection of CM with high specificity. Up to 23% of CM, patients are over-diagnosed due to the presence of clinical symptoms also related to </span>pneumonia, meningitis, or others. Therefore, patients go untreated for these pathologies, resulting in death or neurological disability. It is essential to have a low-cost and high-specificity diagnostic technique for CM detection, for which We developed a method based on </span>transfer learning<span> (TL). Models pre-trained with TL select the good quality retinal images, which are fed into another TL model to detect CM. This approach shows a 96% specificity with low-cost retinal cameras.</span></p></div>","PeriodicalId":55381,"journal":{"name":"Biocybernetics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9851283/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocybernetics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0208521622001140","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Cerebral malaria (CM) is a fatal syndrome found commonly in children less than 5 years old in Sub-saharan Africa and Asia. The retinal signs associated with CM are known as malarial retinopathy (MR), and they include highly specific retinal lesions such as whitening and hemorrhages. Detecting these lesions allows the detection of CM with high specificity. Up to 23% of CM, patients are over-diagnosed due to the presence of clinical symptoms also related to pneumonia, meningitis, or others. Therefore, patients go untreated for these pathologies, resulting in death or neurological disability. It is essential to have a low-cost and high-specificity diagnostic technique for CM detection, for which We developed a method based on transfer learning (TL). Models pre-trained with TL select the good quality retinal images, which are fed into another TL model to detect CM. This approach shows a 96% specificity with low-cost retinal cameras.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用迁移学习和多摄像头视网膜图像自动检测疟疾视网膜病变
脑疟疾(CM)是一种常见于5岁以下儿童的致命综合征 撒哈拉以南非洲和亚洲的岁。与CM相关的视网膜体征被称为疟疾视网膜病变(MR),包括高度特异性的视网膜病变,如白化和出血。检测这些病变可以以高特异性检测CM。高达23%的CM患者由于存在与肺炎、脑膜炎或其他相关的临床症状而被过度诊断。因此,患者因这些疾病得不到治疗,导致死亡或神经系统残疾。有一种低成本、高特异性的CM检测诊断技术是至关重要的,为此我们开发了一种基于迁移学习(TL)的方法。用TL预训练的模型选择高质量的视网膜图像,将其输入另一个TL模型以检测CM。这种方法在低成本的视网膜相机中显示出96%的特异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.50
自引率
6.20%
发文量
77
审稿时长
38 days
期刊介绍: Biocybernetics and Biomedical Engineering is a quarterly journal, founded in 1981, devoted to publishing the results of original, innovative and creative research investigations in the field of Biocybernetics and biomedical engineering, which bridges mathematical, physical, chemical and engineering methods and technology to analyse physiological processes in living organisms as well as to develop methods, devices and systems used in biology and medicine, mainly in medical diagnosis, monitoring systems and therapy. The Journal''s mission is to advance scientific discovery into new or improved standards of care, and promotion a wide-ranging exchange between science and its application to humans.
期刊最新文献
Automating synaptic plasticity analysis: A deep learning approach to segmenting hippocampal field potential signal Probabilistic and explainable modeling of Phase–Phase Cross-Frequency Coupling patterns in EEG. Application to dyslexia diagnosis Skin cancer diagnosis using NIR spectroscopy data of skin lesions in vivo using machine learning algorithms Validation of a body sensor network for cardiorespiratory monitoring during dynamic activities Quantitative evaluation of the effect of circle of willis structures on cerebral hyperperfusion: A multi-scale model analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1